1. Introduction to Machining Processes
 History of Casting
 Development of Foundry Technology in the United States
 Casting Advantages, Applications, and Market Size

2. Principles of Liquid Metal Processing
 Introduction to Principles of Liquid Metal Processing
 Principles of Physical Chemistry
 Thermodynamic Properties of Aluminum-Base and Copper-Base Alloys
 Thermodynamic Properties of Iron-Base Alloys
 Composition Control
 Gases in Metals
 Inclusion-Forming Reactions

3. Principles of Solidification
 Nucleation Kinetics
 Basic Concepts in Crystal Growth and Solidification
 Solidification of Single-Phase Alloys
 Solidification of Eutectics
 Solidification of Peritectics
 Columnar to Equiaxed Transition
 Microsegregation and Macrosegregation
 Behavior of Insoluble Particles at the Solid/Liquid Interface
 Low-Gravity Effects During Solidification
 Solidification of Eutectic Alloys: Aluminum-Silicon Alloys
 Solidification of Eutectic Alloys: Cast Iron
 Interpretation and Use of Cooling Curves (Thermal Analysis)

4. Patterns
 Patterns and Patternmaking

5. Molding and Casting Processes
 Classification of Processes and Flow Chart of Foundry Operations
 Aggregate Molding Materials
 Bonds Formed in Molding Aggregates
Resin Binder Processes
Sand Molding
Coremaking
Plaster Molding
Ceramic Molding
Investment Casting
Replicast Process
Rammed Graphite Molds
Permanent Mold Casting
Die Casting
Centrifugal Casting
Continuous Casting
Counter-Gravity Low-Pressure Casting
Directional and Monocrystal Solidification
Squeeze Casting
Semisolid Metal Casting and Forging

6. Foundry Equipment and Processing
 Sand Processing
 Melting Furnaces: Electric Arc Furnaces
 Melting Furnaces: Induction Furnaces
 Melting Furnaces: Reverberatory Furnaces and Crucible Furnaces
 Melting Furnaces: Cupolas
 Vacuum Melting and Remelting Processes
 Degassing Processes (Converter Metallurgy)
 Degassing Processes (Ladle Metallurgy)
 Nonferrous Molten Metal Processes
 Automatic Pouring Systems
 Shakeout and Core Knockout
 Blast Cleaning of Castings
 Welding of Cast Irons and Steels
 Hot Isostatic Pressing of Castings

 Testing and Inspection of Casting Defects
 Coating of Castings
 Foundry Automation

7. Design Considerations
 Riser Design
 Gating Design
Casting Design
Dimensional Tolerances and Allowances

8. **Ferrous Casting Alloys**
 - Classification of Ferrous Casting Alloys
 - Gray Iron
 - Ductile Iron
 - Compacted Graphite Irons
 - High-Alloy White Irons
 - Malleable Iron
 - High-Alloy Graphitic Irons
 - Plain Carbon Steels
 - Low-Alloy Steels
 - High-Alloy Steels
 - Cast Alnico Alloys

9. **Nonferrous Casting Alloys**
 - Aluminum and Aluminum Alloys
 - Copper and Copper Alloys
 - Zinc and Zinc Alloys
 - Magnesium and Magnesium Alloys
 - Cobalt-Base Alloys
 - Nickel and Nickel Alloys
 - Titanium and Titanium Alloys
 - Zirconium and Zirconium Alloys
 - Cast Metal-Matrix Composites

10. **Computer Applications in Metal Casting**
 - Introduction to Computer Applications in Metal Casting
 - Modeling of Solidification Heat Transfer
 - Modeling of Fluid Flow
 - Modeling of Combined Fluid Flow and Heat/Mass Transfer
 - Modeling of Microstructural Evolution