1. Introduction
 Industrial Significance of Fatigue Problems
 Fracture and Structure
 Fatigue Properties in Engineering
 Alloy Design for Fatigue and Fracture
 Micromechanisms of Monotonic and Cyclic Crack Growth

2. Fatigue Mechanisms, Crack Growth, and Testing
 Fatigue Failure in Metals
 Cyclic Stress-Strain Response and Microstructure
 Fatigue Crack Nucleation and Microstructure
 Fatigue Crack Growth under Variable-Amplitude Loading
 Fatigue Crack Thresholds
 Behavior of Small Fatigue Cracks
 Effect of Crack Shape on Fatigue Crack Growth
 Fatigue Crack Growth Testing
 Mechanisms of Corrosion Fatigue
 Corrosion Fatigue Testing
 Detection and Monitoring of Fatigue Cracks

3. Fatigue Strength Prediction and Analysis
 Fundamentals of Modern Fatigue Analysis for Design
 Estimating Fatigue Life
 Multiaxial Fatigue Strength
 Factors Influencing Weldment Fatigue
 Fatigue of Mechanically Fastened Joints
 Statistical Considerations in Fatigue
 Planning and Evaluation of Fatigue Tests
 Effect of Surface Conditions and Processing on Fatigue Performance
 Fretting Fatigue
 Contact Fatigue
 Fatigue and Fracture Control for Powder Metallurgy Components
 Fatigue and Life Prediction of Gears
 Fatigue and Life Prediction of Bearings
 Fatigue of Springs
4. Fracture Mechanics, Damage Tolerance, and Life Assessment
 - An Introduction to Fracture Mechanics
 - Fracture Resistance of Structural Alloys
 - Fracture Toughness Testing
 - Concepts of Fracture Control and Damage Tolerance Analysis
 - The Practice of Damage Tolerance Analysis
 - Residual Strength of Metal Structures
 - Fatigue and Fracture Control of Weldments
 - Fracture Mechanics in Failure Analysis
 - Operating Stress Maps for Failure Control
 - Failure Control in Process Operations
 - Stress-Corrosion Cracking and Hydrogen Embrittlement
 - Elevated-Temperature Crack Growth
 - High-Temperature Life Assessment
 - Thermal and Thermo mechanical Fatigue of Structural Alloys
 - Life Extension and Damage Tolerance of Aircraft
 - Damage Tolerance Certification of Commercial Aircraft
 - The U.S. Air Force Approach to Aircraft Damage Tolerant Design

5. Fatigue and Fracture Resistance of Ferrous Alloys
 - Fracture and Fatigue Properties of Structural Steels
 - Fatigue Resistance and Microstructure of Ferrous Alloys
 - Fracture Mechanics Properties of Carbon and Alloy Steels
 - Fatigue and Fracture Properties of Cast Steels
 - Fatigue and Fracture Properties of Cast Irons
 - Bending Fatigue of Carburized Steels
 - Contact Fatigue of Hardened Steels
 - Fatigue and Fracture Resistance of Heat-Resistant (Cr-Mo) Ferritic Steels
 - Fatigue and Fracture Properties of Stainless Steels
 - Fracture Toughness of Austenitic Stainless Steels and Their Welds
 - Fatigue and Fracture Properties of Duplex Stainless Steels

6. Fatigue and Fracture Resistance of Nonferrous Alloys
 - Selecting Aluminum Alloys to Resist Failure by Fracture Mechanisms
 - Fatigue and Fracture Properties of Aluminum Alloy Castings
 - Fatigue Strength of Aluminum Alloy Welds
Fatigue and Fracture Properties of Titanium Alloys
Fatigue and Fracture of Nickel-Base Superalloys
Fatigue Properties of Copper Alloys
Fatigue and Fracture Resistance of Magnesium Alloys
Fatigue of Solders and Electronic Materials

7. Fatigue and Fracture of Composites, Ceramics, and Glasses
 Fracture and Fatigue of DRA Composites
 Fatigue of Composite Laminates
 Residual Strength of Composite Aircraft Structures with Damage
 Fatigue of Brittle Materials
 Toughening and Strengthening Models for Nominally Brittle Materials
 Fatigue and Fracture Behavior of Glasses

8. Appendices
 Parameters for Estimating Fatigue Life
 Summary of Stress-Intensity Factors