Volume 11

Failure Analysis and Prevention

1. Engineering Aspects of Failure and Prevention
 Introduction to Failure Analysis and Prevention
 Materials Selection for Failure Prevention
 Design Review for Failure Analysis and Prevention
 Failure Modes and Effects Analysis
 Reliability-Centered Maintenance
 Products Liability and Design

2. Manufacturing Aspects of Failure and Prevention
 Failures Related to Metalworking
 Failures Related to Casting
 Failures Related to Welding
 Failures Related to Heat Treating Operations

3. Structural Life Assessment Methods
 Failure Analysis and Life Assessment of Structural Components and Equipment
 Failure Assessment Diagrams
 Analysis Methods for Probabilistic Life Assessment
 Nondestructive Evaluation and Life Assessment
 Fatigue-Life Assessment
 Elevated-Temperature Life Assessment for Turbine Components, Piping, and Tubing

4. Principles and Practice of Failure Analysis
 The Failure Analysis Process: An Overview
 Organization of a Failure Investigation
 Conducting a Failure Examination
 Determination and Classification of Damage
 Examination of Damage and Material Evaluation
 Modeling and Accident Reconstruction
 Finite Element Modeling in Failure Analysis
5. **Tools and Techniques in Failure Analysis**
- Practices in Failure Analysis
- Photography in Failure Analysis
- Chemical Analysis of Metals in Failure Analysis
- Characterization of Plastics in Failure Analysis
- Stress Analysis and Fracture Mechanics
- X-Ray Diffraction Residual Stress Measurement in Failure Analysis
- Metallographic Techniques in Failure Analysis
- Scanning Electron Microscopy
- Chemical Characterization of Surfaces
- Quantitative Fractography

6. **Fracture**
- Fracture Appearance and Mechanisms of Deformation and Fracture
- Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
- Fatigue Fracture Appearances
- Intergranular Fracture
- Fracture of Plastics
- Fracture Modes and Appearances in Ceramics
- Overload Failures
- Fatigue Failures
- Creep and Stress Rupture Failures
- Thermomechanical Fatigue: Mechanisms and Practical Life Analysis

7. **Corrosion-Related Failures**
- Analysis and Prevention of Corrosion-Related Failures
- Forms of Corrosion
- Effect of Environment on the Performance of Plastics
- Corrosion Failures of Industrial Refractories and Technical Ceramics
- Hydrogen Damage and Embrittlement
- Stress-Corrosion Cracking
- Liquid Metal and Solid Metal Induced Embrittlement
- High-Temperature Corrosion-Related Failures
- Biological Corrosion Failures

8. **Wear Failures**
- Fundamentals of Wear Failures
- Abrasive Wear Failures
- Fretting Wear Failures
- Rolling Contact Fatigue
Rolling-Contact Fatigue of Ceramics
Impact Wear Failures
Spalling from Impact Events
Corrosive Wear Failures
Erosive Wear Failures
Cavitation Erosion
Liquid-Impact Erosion
Wear Failures of Plastics
Wear Failures of Reinforced Polymers

9. Distortion
Analysis of Distortion and Deformation

10. Failures of Manufactured Components and Assemblies
Failures of Shafts
Failures of Sliding Bearings
Failures of Rolling-Element Bearings
Failures of Lifting Equipment
Failures of Mechanical Fasteners
Failures of Springs
Failures of Tools and Dies
Failures of Gears
Failures of Boilers and Related Equipment
Failures of Heat Exchangers
Failures of Pressure Vessels
Failures of Metallic Orthopedic Implants
Failures of Pipelines
Failures of Bridge Components
Failures of Locomotive Axles