Volume 18

Friction, Lubrication, and Wear Technology

1. Solid Friction
 Introduction to Friction
 Basic Theory of Solid Friction
 Frictional Heating Calculations
 Laboratory Testing Methods for Solid Friction
 Friction during Metal Forming
 Appendix: Static and Kinetic Friction Coefficients for Selected Materials

2. Lubricants and Lubrication
 Introduction to Lubrication
 Liquid Lubricants
 Lubrication Regimes
 Lubricant Additives and Their Functions
 Solid Lubricants
 Grease
 Lubricants for Rolling-Element Bearings
 Metalworking Lubricants
 Lubricants for High-Vacuum Applications
 Internal Combustion Engine Lubricants

3. Wear
 Introduction to Wear
 Surface Damage
 Abrasive Wear
 Polishing Wear
 Solid Particle Erosion
 Cavitation Erosion
 Liquid Impingement Erosion
 Slurry Erosion
 Sliding and Adhesive Wear
 Fretting Wear
 Rolling Contact Wear
 Impact Wear
 Corrosive Wear
 Oxidational Wear
Surface Examination
Vibration Analysis
Lubricant Analysis
Motor-Current Signature Analysis
Radionuclide Methods

4. Laboratory Characterization Techniques
 Introduction to Laboratory Characterization Techniques
 Surface Texture
 Surface Topography and Image Analysis (Area)
 Confocal Microscopy
 Wear Measurement
 Light Microscopy
 Electron Microscopy
 Scanning Tunneling Microscopy
 Measurement of Surface Forces and Adhesion
 Characterization of Surfaces by Acoustic Imaging Techniques
 Microindentation Hardness Testing
 Nanoindentation
 Scratch Testing
 Surface Temperature Measurement
 Surface Chemical Analysis
 X-Ray Characterization of Surface Wear

5. Systematic Diagnosis of Friction and Wear Test Data
 Basic Tribological Parameters
 Design of Friction and Wear Experiments
 Presentation of Friction and Wear Data
 Concepts of Reliability and Wear: Failure Modes

6. Friction and Wear of Components
 Friction and Wear of Rolling-Element Bearings
 Friction and Wear of Sliding Bearings
 Friction and Wear of Gas-Lubricated Bearings
 Friction, Lubrication, and Wear of Gears
 Friction and Wear of Seals
 Friction and Wear of Internal Combustion Engine Parts
 Friction and Wear of Automotive and Truck Drive Trains
 Friction and Wear of Automotive Brakes
 Friction and Wear of Tires
Friction and Wear of Aircraft Brakes
Wear of Jet Engine Components
Wear of Pumps
Friction and Wear of Compressors
Friction and Wear of Cutting Tools and Cutting Tool Materials
Friction and Wear of Dies and Die Materials
Friction and Wear in the Mining and Mineral Industries
Friction and Wear of Medical Implants and Prosthetic Devices
Friction and Wear of Dental Materials
Friction and Wear of Electrical Contacts
Friction and Wear of Semiconductors

7. Materials for Friction and Wear Applications
 Introduction to Materials for Friction and Wear Applications
 Friction and Wear of Cast Irons
 Friction and Wear of Carbon and Alloy Steels
 Wear of Stainless Steels
 Friction and Wear of Bearing Steels
 Friction and Wear of Tool Steels
 Friction and Wear of Sliding Bearing Materials
 Friction and Wear of Hardfacing Alloys
 Friction and Wear of Cobalt-Base Wrought Alloys
 Friction and Wear of Ordered Intermetallic Alloys of Ni$_3$Al
 Friction and Wear of Titanium Alloys
 Friction and Wear of Aluminum-Silicon Alloys
 Friction and Wear of Cemented Carbides
 Friction and Wear of Metal-Matrix Composites
 Friction and Wear of Ceramics
 Friction and Wear of Carbon-Graphite Materials
 Friction and Wear of Thermoplastic Composites

8. Surface Treatments and Coatings for Friction and Wear Control
 Thermal Spray Coatings
 Electroplated Coatings
 PVD and CVD Coatings
 Ion Implantation
 Laser Surface Processing
 Carburizing
 Nitriding and Nitrocarburizing