1. The Design Process
 - The Role of the Materials Engineer in Design
 - Overview of the Design Process
 - Conceptual and Configuration Design of Products and Assemblies
 - Conceptual and Configuration Design of Parts
 - Creative Concept Development
 - Cross-Functional Design Teams

2. Criteria and Concepts in Design
 - Concurrent Engineering
 - Designing to Codes and Standards
 - Statistical Aspects of Design
 - Reliability in Design
 - Life-Cycle Engineering and Design
 - Design for Quality
 - Robust Design
 - Risk and Hazard Analysis in Design
 - Human Factors in Design
 - Environmental Aspects of Design
 - Safety in Design
 - Products Liability and Design

3. Design Tools
 - Computer-Aided Design
 - Mechanism Dynamics and Simulation
 - Finite Element Analysis
 - Computational Fluid Dynamics
 - Computer-Aided Electrical/Electronic Design
 - Design Optimization
 - Dimensional Management and Tolerance Analysis
 - Documenting and Communicating the Design
 - Rapid Prototyping

4. The Materials Selection Process
 - Overview of the Materials Selection Process
 - Techno-Economic Issues in Materials Selection
 - Material Property Charts
 - Performance Indices
Decision Matrices in Materials Selection
Relationship between Materials Selection and Processing
Computer-Aided Materials Selection
Value Analysis in Materials Selection and Design
Use of Failure Analysis in Materials Selection

5. Effects of Composition, Processing, and Structure
 On Materials Properties
 Introduction to the Effects of Composition, Processing, and Structure
 on Materials Properties
 Fundamental Structure-Property Relationships in Engineering
 Materials
 Effects of Composition, Processing, and Structure on Properties of
 Irons and Steels
 Effects of Composition, Processing, and Structure on Properties of
 Nonferrous Alloys
 Effects of Composition, Processing, and Structure on Properties of
 Ceramics and Glasses
 Effects of Composition, Processing, and Structure on Properties of
 Engineering Plastics
 Effects of Composition, Processing, and Structure on Properties of
 Composites
 Effects of Surface Treatments on Materials Performance
 Sources of Materials Property Data and Information

6. Properties versus Performance of Materials
 Properties Needed for the Design of Static Structures
 Design for Fatigue Resistance
 Design for Fracture Toughness
 Design for Corrosion Resistance
 Design for High-Temperature Applications
 Design for Oxidation Resistance
 Design for Wear Resistance
 Properties Needed for Electronic and Magnetic Applications
 Design with Brittle Materials
 Design with Plastics
 Design with Composites

7. Manufacturing Aspects of Design
 Introduction to Manufacturing and Design
 Design for Manufacture and Assembly
 Manufacturing Processes and Their Selection
 Modeling of Manufacturing Processes
Manufacturing Cost Estimating
Design for Casting
Design for Deformation Processes
Design for Powder Metallurgy
Design for Machining
Design for Joining
Design for Heat Treatment
Design for Ceramic Processing
Design for Plastics Processing
Design for Composite Manufacture
Control of Residual Stresses
Design for Surface Finishing