Volume 20

Materials Selection and Design

1. The Design Process

The Role of the Materials Engineer in Design

Overview of the Design Process

Conceptual and Configuration Design of Products and Assemblies

Conceptual and Configuration Design of Parts

Creative Concept Development

Cross-Functional Design Teams

2. Criteria and Concepts in Design

Concurrent Engineering

Designing to Codes and Standards

Statistical Aspects of Design

Reliability in Design

Life-Cycle Engineering and Design

Design for Quality

Robust Design

Risk and Hazard Analysis in Design

Human Factors in Design

Environmental Aspects of Design

Safety in Design

Products Liability and Design

3. Design Tools

Computer-Aided Design

Mechanism Dynamics and Simulation

Finite Element Analysis

Computational Fluid Dynamics

Computer-Aided Electrical/Electronic Design

Design Optimization

Dimensional Management and Tolerance Analysis

Documenting and Communicating the Design

Rapid Prototyping

4. The Materials Selection Process

Overview of the Materials Selection Process

Techno-Economic Issues in Materials Selection

Material Property Charts

Performance Indices

Decision Matrices in Materials Selection Relationship between Materials Selection and Processing Computer-Aided Materials Selection Value Analysis in Materials Selection and Design Use of Failure Analysis in Materials Selection

5. Effects of Composition, Processing, and Structure On Materials Properties

Introduction to the Effects of Composition, Processing, and Structure on Materials Properties

Fundamental Structure-Property Relationships in Engineering Materials

Effects of Composition, Processing, and Structure on Properties of Irons and Steels

Effects of Composition, Processing, and Structure on Properties of Nonferrous Alloys

Effects of Composition, Processing, and Structure on Properties of Ceramics and Glasses

Effects of Composition, Processing, and Structure on Properties of Engineering Plastics

Effects of Composition, Processing, and Structure on Properties of Composites

Effects of Surface Treatments on Materials Performance Sources of Materials Property Data and Information

6. Properties versus Performance of Materials

Properties Needed for the Design of Static Structures

Design for Fatigue Resistance

Design for Fracture Toughness

Design for Corrosion Resistance

Design for High-Temperature Applications

Design for Oxidation Resistance

Design for Wear Resistance

Properties Needed for Electronic and Magnetic Applications

Design with Brittle Materials

Design with Plastics

Design with Composites

7. Manufacturing Aspects of Design

Introduction to Manufacturing and Design

Design for Manufacture and Assembly

Manufacturing Processes and Their Selection

Modeling of Manufacturing Processes

Manufacturing Cost Estimating

Design for Casting

Design for Deformation Processes

Design for Powder Metallurgy

Design for Machining

Design for Joining

Design for Heat Treatment

Design for Ceramic Processing

Design for Plastics Processing

Design for Composite Manufacture

Control of Residual Stresses

Design for Surface Finishing