1. Introduction
 History of Powder Metallurgy
 Powder Metallurgy Methods and Design
 Advances in Powder Metallurgy Applications
 Powder Metallurgy Process Modeling and Design

2. Metal Powder Production and Characterization
 Introduction to Metal Powder Production and Characterization
 Atomization
 Milling of Brittle and Ductile Materials
 Chemical and Electrolytic Methods of Powder Production
 Ultrafine and Nanophase Powders
 Mechanical Alloying
 Spray Drying and Granulation
 Rotating Electrode Process
 Blending and Premixing of Metal Powders and Binders
 Effect of Blending Techniques on Properties of Metal Powder Mixes
 Production of Iron Powder
 Production of Steel Powders
 Production of Copper Powders
 Production of Copper Alloy Powders
 Production of Tin Powders
 Production of Aluminum and Aluminum-Alloy Powder
 Production of Titanium Powder
 Production of Nickel-Base Powders
 Production of Cobalt-Base Powders
 Production of Precious Metal Powders: Silver, Gold, Palladium, and Platinum
 Production of Refractory Metal Powders
 Production of Beryllium Powders
 Sampling and Classification of Powders
 Bulk and Surface Characterization of Powders
 Particle Size and Size Distribution in Metal Powders
 Sieve and Fisher Subsieve Analysis of Metal Powders
 Sedimentation Methods for Classifying Metal Powders
 Electric and Optical Sensing Zone Analysis of Powders
 Light Scattering Measurement of Metal Powders
 Time of Flight Measurement of Metal Powders
 Particle Image Analysis
3. Shaping and Consolidation Technologies
 Powder Shaping and Consolidation Technologies
 Powder Treatments and Lubrication
 Mechanical Behavior of Metal Powders and Powder Compaction
 Modeling
 Powder Metallurgy Presses and Tooling
 Powder Injection Molding
 Binder-Assisted Extrusion
 Warm Compaction
 Cold Isostatic Pressing
 Roll Compacting of Metal Powders
 Spray Forming
 Thermal Spray Forming of Materials
 Slip Casting of Metals
 Powder Metallurgy Methods for Rapid Prototyping
 Consolidation Principles and Process Modeling
 Sintering Furnaces and Atmospheres
 Production Sintering Practices
 Consolidation of Ultrafine and Nanocrystalline Powder
 Reactive Sintering
 Combustion Synthesis of Advanced Materials
 Infiltration
 Liquid-Phase Sintering
 Cold Sintering--High Pressure Consolidation
 Field-Activated Sintering
 Principles and Process Modeling of Higher-Density Consolidation
 Hot Isostatic Pressing of Metal Powders
 Extrusion of Metal Powders
 Forging and Hot Pressing
 Pneumatic Isostatic Forging

4. Secondary Operations and Quality Control
 Heat Treatment of Ferrous Powder Metallurgy Parts
 Welding and Joining Processes
 Techniques for Improving Dimensional Tolerance of Powder Metallurgy
 Machinability of P/M Steels
 Machining of Powder Metallurgy Materials
 Resin Impregnation of Powder Metal Parts
 Planning and Quality Control of Powder Metallurgy Parts Production
5. **Materials Systems, Properties, and Applications**

Ferrous Powder Metallurgy Materials
Copper-Infiltrated Steels
Powder Metallurgy Stainless Steels
Particle Metallurgy Tool Steels
Powder Forged Steel
High-Temperature Sintering of Ferrous Powder Metallurgy Components
Conventional Aluminum Powder Metallurgy Alloys
Advanced Aluminum Powder Metallurgy Alloys and Composites
Copper Powder Metallurgy Alloys and Composites
Titanium Powder Metallurgy Alloys and Composites
Powder Metallurgy Superalloys
Powder Metallurgy Refractory Metals
Powder Metallurgy Tungsten Heavy Alloys
Powder Metallurgy Cermets and Cemented Carbides
Powder Metallurgy Beryllium
Mechanical Properties of High-Performance Powder Metallurgy Parts
Fatigue and Fracture Control for Powder Metallurgy Components
Wear Resistance of Powder Metallurgy Alloys
Corrosion-Resistant Powder Metallurgy Alloys
Magnetic Materials and Properties for Powder Metallurgy Part Applications
Powder Metallurgy Electrical Contact Materials
Porous Powder Metallurgy Technology
Metallic Foams
Friction Powder Metallurgy Materials
Powder Metallurgy Bearings
Powder Metallurgy Gears
Metal and Alloy Powders for Welding, Hardfacing, Brazing, and Soldering
Specialty Applications of Metal Powders

6. **Appendices**

Appendix 1: Mechanical Properties of Ferrous Powder Materials
Appendix 2: Powder Metallurgy Standards
Appendix 3: Examples of Powder Metallurgy Parts