SHEET METAL FORMABILITY

DEFINITIONS OF SELECTED TERMS
 DRAWING
 STRETCHING
 COMPLEX FORMING OPERATIONS

PHYSICAL PROPERTIES

DUCTILITY
PLANAR SHEAR
TENSION TESTING

SHEET METAL FORMING FORMING MODES
 FORMING LIMITS
 the role of lubrication
 SHEET STEEL MATERIALS
 NONFERROUS SHEET
 METAL FORMABILITY
 SIMULATIVE FORMABILITY TESTS
 SUPERPLASTIC METALFORMING

ANALYTICAL METHODS

CIRCULAR GRID SYSTEM
FORMING LIMIT DIAGRAM
COMPUTER SYSTEM
SHAPE ANALYSIS
COMPUTER-AIDED MODELING

FORMABILITY PREDICTION AND EVALUATION

SURFACE PATTERN FOR ANALYSES
FORMING LIMIT DIAGRAM (FLD) CONCEPT
SHAPE ANALYSIS (SA)
COMPARING FLD AND SA RESULTS
APPLICATION OF TECHNIQUES

DIE AND MOLD MATERIALS

MATERIAL SELECTION

CARBON AND LOW-ALLOY STEELS

HOT-ROLLED STEELS
cold rolled steels

CAST IRONS AND STEELS

CAST IRONS FOR DIES
STEEL CASTINGS FOR DIES

STAINLESS AND MARAGING STEELS

STAINLESS STEELS

MARAGING STEELS

TOOL STEELS

CLASSIFICATION OF TOOL STEELS
ALLOYING ELEMENTS
PRODUCTION VARIABLES
SELECTING TOOL STEELS
heat treatment of tool steels

STEEL-BONDED CARBIDES

GRADES AVAILABLE
ADVANTAGES
APPLICATIONS
DIE DESIGN AND CONSTRUCTION
MACHINING AND
GRINDING PROCEDURES
heat treatment

CEMENTED TUNGSTEN CARBIDE

APPLICATIONS
PRODUCTION OF CEMENTED CARBIDES
CEMENTED CARBIDE PROPERTIES
GRADE CLASSIFICATIONS
GRADE SELECTION
DESIGN CONSIDERATIONS
FINISHING OF CARBIDES
TROUBLESHOOTING

NONFERROUS METALS

ALUMINUM BRONZES
BERYLLIUM COPPERS
ZINC-BASED ALLOYS
ANTIMONIAL LEAD
BISMUTH ALLOYS

PLASTICS FOR DIES AND MOLDS

adVantages of using plastics
LIMITATIONS OF PLASTICS
TYPICAL APPLICATIONS
PLASTICS USED
POLYURETHANES
DIE AND MOLD CONSTRUCTION

OTHER NONMETALLIC DIE MATERIALS

HARDWOODS
HARDBOARDS
DENSIFIED WOOD
RUBBER
CORK

LUBRICANTS

PRINCIPLES OF LUBRICATION

FILM THEORY
OPERATING PARAMETERS
MATERIAL SURFACE PROPERTIES
LUBRICANT SELECTION

TYPES OF LUBRICANTS

LUBRICANT PROPERTIES
INGREDIENTS
LUBRICANT FORMULATIONS

LUBRICANT APPLICATION METHODS

BENEFITS
BASIC METHODS

WASTE TREATMENT AND DISPOSAL

WASTE TREATMENT

BIODEGRADABILITY

CLEANING

TYPES OF CLEANERS
CLEANER SELECTION FACTORS TYPES OF CLEANERS
GENERAL GUIDELINES
LUBRICANT QUALITY CONTROL
STANDARDS
TESTING
STORAGE
RECOVERY

TROUBLESHOOTING

VISCOSITY
MIXTURE
LUBRICITY AND EP AGENTS
COMPLEX COMPOUNDS

SHEET METAL BLANKING AND FORMING

STAMPING PRESS OPERATIONS

MATERIALS USED
FOR STAMPINGS
BLANKING AND FORMING OVERVIEW
NOMENCLATURE

BLANKING

TERMINOLOGY
THE BLANKING/PUNCHING PROCESS
ZONES OF A SHEARED PART
FORCE CALCULATIONS
BLANK DESIGN
FINE BLANKING

FORMING

BENDING AND FLANGING
DRAWING
IRONING
BULGING
COMPRESSION OPERATIONS
CREEP FORMING
RUBBER PAD FORMING
SUPERPLASTIC FORMING

TOLERANCES FOR STAMPINGS

PRACTICAL DATA
FLAT STAMPINGS
FORMED STAMPINGS
HIGH-VOLUME PRODUCTION

PRESSES FOR SHEET METAL FORMING

PRESS NOMENCLATURE

TYPES OF PRESSES

SOURCE OF POWER NUMBER OF SLIDES

PRESS SELECTION

SIZE REQUIREMENTS
PRESS SPEEDS
MECHANICAL VS. HYDRAULIC PRESSES
PRESS SYSTEMS
FASTER DIE CHANGING

TYPES OF FRAMES AND CONSTRUCTION
MECHANICAL PRESS DRIVES
FORCE, ENERGY AND
TORQUE CONSIDERATIONS
PRESS CLUTCHES AND BRAKES
PRESS CONTROLS
MECHANICAL PRESS SAFETY
PRESS LUBRICATION AND MAINTENANCE

HYDRAULIC PRESSES

```
ADVANTAGES OF HYDRAULIC PRESSES
PRESS LIMITATIONS
FRAME CONSTRUCTION
SELF-CONTAINED WORKHEADS
TOOL-CASTING PRESSES
AUTOMATIC TOOL CLAMPING
LIMITING DOWNSTROKE
REDUCING SHOCK LOADS
PRESSURE SYSTEMS
PRESS CONTROLS
HYDRAULIC PRESS SAFETY
```


PNEUMATIC PRESSES

ADVANTAGES OF PNEUMATIC PRESSES POSSIBLE LIMITATIONS

APPLICATIONS OF PNEUMATIC PRESSES TYPES OF PNEUMATIC PRESSES

SPECIAL-PURPOSE PRESSES

DIE-SETTING PRESSES
DIEING MACHINES
LAMINATION PRESSES
FLEXIBLE-DIE FORMING PRESSES
FINE-BLANKING PRESSES
FOUR-SLIDE MACHINES
TRANSFER PRESSES
DIE-SET TRANSFER PRESSES
MULTISTATION-PLUNGER
TRANSFER PRESS
PORTAL PRESSES

DIE DESIGN FOR SHEET METAL FORMING

DIE NOMENCLATURE

DIE COMPONENTS

DIE SETS

STRIPPERS
KNOCKOUTS
STOPS
KICKER (SHEDDER) PINS
STOCK PUSHERS
GUIDES
HEEL AND WEAR PLATES
STOP BLOCKS
PERFORATORS (PUNCHES)
PILOTS
PILOT HOLDERS
MISFEED DETECTORS
DIE BUTTONS
RETAINERS
SPRING RETAINERS

LOCATION OF STAMPINGS IN DIES

DESIGN CHECKLIST

PLANNING DIE PROCESSING

RULES FOR DESIGN

CUTTING DIES

BLANKING AND PUNCHING
CLEARANCE
BLANKING OR PUNCHING FORCES
DIE DESIGN

BENDING AND FLANGING
EMBOSSING AND BEADING
DRAWING
IRONING
BULGING
COMPRESSION OPERATIONS

MULTIPLE-OPERATION PROCESSES

SINGLE-STATION OPERATIONS
MULTIPLE-STATION OPERATIONS
FOUR-SLIDE OPERATIONS
SAFETY CONSIDERATIONS AND TROUBLESHOOTING

EXPANDING, SHRINKING AND STRETCH FORMING

EXPANDING

ADVANTAGES OF EXPANDING MATERIALS EXPANDED WORKPIECE SIZES
EXPANDING APPLICATIONS
EXPANDING MACHINES
TOOLING FOR EXPANDING
EXPANDING MULTIPLE PANELS

FLUID EXPANDING

CONVENTIONAL BLANK SLIPPAGE EXPANDING WITH 100\% STRETCH COLUMN COMPRESSION
AND FLUID EXPANSION

SHRINKING

MATERIALS AND SHAPES
MACHINES USED
SHRINKING APPLICATIONS
COMBINED EXPANDING AND SHRINKING
LOCALIZED EXPANDING AND SHRINKING

STRETCH FORMING

ADVANTAGES OF STRETCH FORMING
PROCESS LIMITATIONS STRETCH FORMED MATERIALS
APPLICATIONS OF STRETCH FORMING STRETCH FORMING MACHINES
TOOLING FOR STRETCH FORMING
OPERATING PARAMETERS
TROUBLESHOOTING

ANDROFORMING

FORMING PRINCIPLE ANDROFORMING MACHINES

ROLL FORMING

ROLL FORMING

DESIGN CONSIDERATIONS
ROLL FORMING METHODS
ADVANTAGES AND LIMITATIONS
MATERIALS ROLL FORMED
TOLERANCES
ROLL FORMING APPLICATIONS

ROLL FORMING MACHINES

TYPES OF ROLL FORMING MACHINES
MACHINE SELECTION
AUXILIARY EQUIPMENT

ROLL FORMING TOOLING

FORMING ROLLS
FLYING CUTOFF DIES
TUBE AND PIPE ROLLING

OPERATING PARAMETERS

POWER REQUIREMENT
SPEED
EQUIPMENT SETUP
LUBRICATION

TROUBLESHOOTING AND MAINTENANCE

TROUBLESHOOTING
MAINTENANCE

SAFETY CONSIDERATIONS

SPINNING

TYPES OF METAL SPINNING

MANUAL SPINNING
POWER SPINNING
SHEAR FORMING
TUBE SPINNING
ELEVATED TEMPERATURE SPINNING
COMBINED AND
SUPPLEMENTARY OPERATIONS

SPINNING CAPABILITIES

PROCESS ADVANTAGES
LIMITATIONS OF SPINNING
SHAPES PRODUCED
MATERIALS SPUN
APPLICATIONS OF SPINNING

SPINNING MACHINES

MANUAL SPINNING LATHES
POWER-ASSISTED MACHINES
SHEAR FORMING MACHINES
MACHINE ACCESSORIES
AND ATTACHMENTS
MULTISPINDLE MACHINES

TOOLING FOR SPINNING

CHUCKS

TOOLS FOR MANUAL SPINNING
ROLLERS FOR SHEAR FORMING
AND TUBE SPINNING
TEMPLATE MATERIALS

OPERATING PARAMETERS FOR SPINNING

POWER AND PRESSURE REQUIREMENTS
SPEEDS AND FEEDS
LUBRICANTS AND COOLANTS

BENDING AND STRAIGHTENING

SHEET AND PLATE BENDING

BENDING NOMENCLATURE
THEORY OF METAL FLOW
BEND ALLOWANCE
BENDING FORCE REQUIRED
TYPES OF BENDING
BENDING WITH PRESS BRAKES
BENDING METHODS
PRESS BRAKE DIES
PRESS BRAKE GAGING
PRESS BRAKE SAFETY
ROLL BENDING
PLATE BENDING

TUBE, PIPE, AND BAR BENDING

BENDING THEORY AND PROCESS
TUBE AND BAR BENDING
BENDING METHODS
BENDING EQUIPMENT
PIPE BENDING

STRAIGHTENING

INSPECTION METHODS
PRINCIPLES OF STRAIGHTENING
ADVANTAGES
LIMITATIONS
STOCK OR CONTINUOUS MATERIALS
METAL PARTS AND COMPONENTS
TOOLING

SHEARING

GLOSSARY OF SHEARING TERMS

SHEARING PRINCIPLES

SHEARING CAPABILITIES AND ADVANTAGES

SHEAR CONSTRUCTION

OVERDRIVEN SHEARS
UNDERDRIVEN SHEARS
SWINGING BEAM SHEARS

TYPES OF SHEARS

CROSSHEAD DRIVE
SHEAR DESIGN
SLITTING
SHEAR ACCESSORIES

SHEAR KNIVES

KNIFE SELECTION
KNIFE SHARPNESS

OPERATING PARAMETERS

POWER
SHEARING FORCE
RAKE
KNIFE CLEARANCE
SHEARING SPEED
MAINTENANCE
TROUBLESHOOTING
CAMBER
BOW
TWIST
SAFETY IN SHEARING OPERATIONS

PUNCHING

PUNCHING

ADVANTAGES
WORKPIECE SIZES
APPLICATIONS
PRESSES
TYPES OF PUNCH PRESSES
PRESS CONTROL
PUNCH PRESS SELECTION
PUNCH PRESS ACCESSORIES

NOTCHING MACHINES

OPERATION
TOOLING

TOOLING FOR PUNCH PRESSES

PUNCH SELECTION
TOOL MOUNTING

OPERATING PARAMETERS

SPEED
NIBBLED PATH EVALUATION
FORMING ON A PUNCH PRESS
LUBRICANTS
MAINTENANCE
SAFETY

DRAWING, EXTRUDING AND UPSETTING

COLD DRAWING OF BAR, WIRE AND TUBE

PURPOSES OF COLD DRAWING DRAFT, REDUCTION AND ELIONGATION
PREPARING FOR COLD DRAWING
DRAWING ROD AND WIRE
DRAWING BARS
DRAWING TUBES
OTHER DRAWING METHODS
DIES FOR DRAWING
LUBRICANTS FOR COLD DRAWING

HOT EXTRUSION

HISTORY OF HOT METAL EXTRUSION
ADVANTAGES OF EXTRUSION
POSSIBLE LIMITATIONS
METHODS OF EXTRUDING
MATERIALS EXTRUDED
AND APPLICATIONS
PRESSES FOR HOT EXTRUSION
TOOLING FOR HOT EXTRUSION
OPERATING PARAMETERS
SAFETY CONSIDERATIONS

COLD AND WARM EXTRUSION

ADVANTAGES OF THE PROCESS
LIMITATIONS OF COLD EXTRUSION
SHAPES AND SIZES PRODUCED
MATERIALS EXTRUDED
APPLICATIONS
METHODS OF EXTRUDING
PRESSES FOR COLD AND
WARM EXTRUSION
TOOLING FOR COLD AND
WARM EXTRUSION
PRODUCING SLUGS FOR EXTRUDING
PRESSURE REQUIREMENTS FOR
COLD EXTRUSION
EXTRUDING SPEEDS
SAFETY CONSIDERATIONS

COLD AND WARM UPSETTING (HEADING)

ADVANTAGES OF UPSETTING LIMITATIONS OF UPSETTING

UPSET LENGTHS
UPSET VOLUMES
HEIGHT REDUCTION
MATERIALS UPSET
APPLICATIONS OF UPSETTING
METHODS OF UPSETTING
MACHINES FOR UPSETTING
TOOLING FOR UPSETTING
SAFETY CONSIDERATIONS

AUTOMATIC COLD AND WARM FORMING

ADVANTAGES AND LIMITATIONS
PART SHAPES AND SIZES FORMED
MATERIALS FORMED
APPLICATIONS OF AUTOMATIC FORMING
MACHINES FOR AUTOMATIC FORMING
TOOLING AND OPERATING PARAMETERS
SAFETY CONSIDERATIONS

SWAGING

THE SWAGING PROCESS

METAL FLOW
WORK ROTATION
EFFECTS ON
MATERIAL PROPERTIES

DIMENSIONAL CHANGES

ADVANTAGES AND LIMITATIONS OF SWAGING
 ECONOMY OF SWAGING VERSATILITY OF SWAGING
 IMPROVEMENTS IN QUALITY LIMITATIONS OF SWAGING

MATERIALS SWAGED

METHODS OF SWAGING

TUBE SWAGING
MANDREL SWAGING
HOT SWAGING
INTERNAL SWAGING

SWAGING APPLICATIONS

SWAGING MACHINES

MACHINE CAPACITY
NUMBER OF DIES
ROTARY SWAGING MACHINES
DIE-CLOSING SWAGERS
STATIONARY-SPINDLE
SWAGING MACHINES
CREEPING-SPINDLE SWAGERS
HOT SWAGING MACHINES
SIMULTANEOUS-BLOW
SWAGING MACHINES
ALTERNATE-BLOW SWAGING MACHINES
INTERNAL SWA GING MACHINES
SWAGING SMALL PARTS ON PRESSES

FEEDING SWAGERS

HAND FEEDING
POWER FEEDING

SWAGING DIES

TYPES OF OPERATIONS
TYPES OF DIES DIE MATERIALS

SWAGING MANDRELS

OPERATING PARAMETERS

FEED RATES
CLEANLINESS AND LUBRICATION
TOOL MAINTENANCE
TROUBLESHOOTING

HOT FORGING

GLOSSARY OF FORGING TERMS

FORGING PROCESSES

OPEN-DIE FORGING
IMPRESSION-DIE FORGING
RELATED PROCESSES
PREFORMING
ADVANTAGES
TOLERANCES
APPLICATIONS

MATERIALS FOR FORGING

FORGEABILITY
FERROUS MATERIALS
NONFERROUS MATERIALS
SUPERALLOYS
REFRACTORY MATERIALS

FORGING EQUIPMENT

SELECTION CRITERIA
FORGING HAMMERS
HIGH ENERGY RATE FORMING MACHINES
MECHANICAL PRESSES
HYDRAULIC PRESSES
SCREW PRESSES
FORGING MACHINES
HOT FORMERS
FORGING ROLLS
WEDGE ROLLING MACHINES
RADIAL FORGING MACHINES
RING ROLLING MACHINES
AUXILIARY EQUIPMENT

OPERATING PARAMETERS

FORCE

SPEED

TOOLING

OPEN DIES
IMPRESSION DIES
FORGING MACHINE DIES
TRIMMING AND PUNCHING DIES
OTHER TOOLING
COMPUTER APPLICATIONS

FORGING LUBRICANTS

LUBRICANT REQUIREMENTS
TYPES OF LUBRICANTS
LUBRICANT SELECTION
LUBRICANT APPLICATION

TROUBLESHOOTING AND SAFETY

FORGING DEFECTS
DIE FAILURE
INSPECTION TECHNIQUES
SAFETY

CASTING

CASTING

CASTING MOLD ELEMENTS
GENERAL CHARACTERISTICS PROCESS SELECTION COMPUTERIZED OPERATIONS NOMENCLATURE

SAND-MOLD CASTING

DESIGN CONSIDERATIONS
DIMENSIONAL VARIATIONS AND STOCK REQUIREMENTS
DRY-SAND MOLDING
GREEN-SAND MOLDING
SHELL MOLDING
THE FULL-MOLD PROCESS
CEMENT MOLDING
VACUUM MOLDING
COREMAKING PROCESSES
CORE AND COREBOX-MAKING METHODS
MELTING AND POURING
CLEANING AND FINISHING
HEAT TREATMENT
INSPECTION
FINISHING

METAL-MOLD CASTING

HIGH-PRESSURE DIE CASTING
PERMANENT-MOLD CASTING
CENTRIFUGAL CASTING

PLASTER AND CERAMIC-MOLD CASTING

PLASTER MOLDING
INVESTMENT CASTING
SOLID-CERAMIC MOLDING
CERAMIC CORES

POWDER METALLURGY

GENERAL CONSIDERATIONS

PROCESS FUNDAMENTALS
SECONDARY OPERATIONS
METAL POWDERS
ADVANTAGES OF PM
NOMENCLATURE

METAL POWDERS

POWDER PRODUCTION

POWDER TYPES

PM PRODUCT DESIGN

GENERAL CONSIDERATIONS
DESIGN FACTORS

POWDER MIXING AND BLENDING

MIXER VARIABLES
LUBRICANT

COMPACTING

BEHAVIOR OF POWDERS ${ }^{10}$ PRESSES

SINTERING

SINTERING METHODS
FURNACES
LUBRICANT PURGING
ATMOSPHERES

TOOLING FOR PM PARTS

TOOLING DESIGN FACTORS
DIE DESIGN
PM TOOLING SYSTEMS
PRACTICAL OPERATING TIPS

COMPACTING PRESSES

MECHANICAL PRESSES

HYDRAULIC PRESSES
ANVIL PRESSES
ROTARY PRESSES
SINGLE LOWER PUNCH,
OPPOSED-RAM PRESSÉS
SINGLE LOWER PUNCH
WITHDRAWAL PRESS
MULTIPLE MOTION DIE SET PRESSES
MULTIPLE MOTION ADJUSTABLE
STOP PRESSES
PM PRESS CONTROLS AND GUARDING

POWDER FEEDING SYSTEM

PRESS MAINTENANCE

SECONDARY OPERATIONS

REPRESSING
FORGING
heat treatment and
STEAM TREATMENT
IMPREGNATION AND INFILTRATION
MACHINING
FINISHING
JOINING

SPECIAL PM PROCESSES

PRESSURE COMPACTION METHODS
ISOSTATIC COMPACTION
PRESSURELESS PM
COMPACTION METHODS
WROUGHT PM PROCESSES

NONFERROUS PM METALS

MAGNESIUM
BERYLLIUM
TITANIUM
COPPER
POWDER METALLURGY SUPERALLOYS

QUALITY CONTROL

POWDER TESTS
QUALITY CONTROL PROGRAM"
NONDESTRUCTIVE EVALUATION

SAFETY

PLASTICS FORMING

NOMENCLATURE

PLASTICS MATERIALS

MOLECULAR STRUCTURE
PRINCIPAL TYPES OF POLYMERS
ADDITIVES'
PROPERTIES AND LIMITATIONS

PART DESIGN AND PROCESSING

DESIGN CONSIDERATIONS
STANDARD TESTS
PROCESSING METHODS
DESIGN/MANUFACTURING
INTERACTION
THERMOSET PLASTICS MOLDING
PRINCIPLES OF PLASTICS MOLDING
COMPRESSION MOLDING
TRANSFER MOLDING
MOLDING PROCESS COMPARISON

INJECTION MOLDING

MOLDING PROCESS
ADVANTAGES AND LIMITATIONS
EQUIPMENT
TROUBLESHOOTING

EXTRUSION FORMING

EXTRUSION PROCESS
EXTRUSION EQUIPMENT

REACTION INJECTION MOLDING

RIM ADVANTAGES
RIM LIMITATIONS
RIM MATERIALS AND APPLICATIONS
RIM PROCESS

HIGH-VOLUME PROCESSES
LOW-VOLUME PROCESSES

THERMOFORMING PLASTIC SHEET AND FILM

MACHINERY REQUIREMENTS
TOOLING
THERMOFORMING TECHNIQUES
HIGH-PRESSURE LAMINATES

OTHER PROCESSING METHODS

BLOW MOLDING
LIQUID INJECTION MOLDING
ROTATIONAL MOLDING
STRUCTURAL FOAM MOLDING
CASTING
FILM AND SHEET FORMING

MACHINING AND FINISHING

GUIDELINES FOR MACHINING
TURNING
FILING
ROUTING AND SHAPING
GEAR CUTTING
SAWING
THREADING AND TAPPING
DRILLING
PUNCHING
EMBOSSING
BUFFING
POLISHING

SPECIAL FORMING METHODS

DESCRIPTION OF SPECIAL FORMING METHODS

ADVANTAGES AND LIMITATIONS

MATERIAL FORMED
WORKPIECE SIZES AND TOLERANCES

SELECTION CRITERIA

ECONOMIC CHARACTERISTICS
PERFORMANCE CHARACTERISTICS

FORMING METHODS

EXPLOSIVE FORMING
ELECTROHYDRAULIC FORMING
ELECTROMAGNETIC FORMING
HIGH-VELOCITY FORGING
PEEN FORMING
ULTRASONIC-ACTIVATED FORMING

SAFETY IN FORMING

SAFETY PROGRAM FUNDAMENTALS

GENERAL CONSIDERATIONS HOW TO BEGIN

SAFETY PROGRAM DEVELOPMENT

EXAMPLES OF SAFETY DIRECTIVES
SAFETY PROGRAM METHODOLOGY
A SYSTEMATIC APPROACH TO METALFORMING SAFETY
FIRE PROTECTION

EFFECTIVE SAFETY PROGRAMS

COMMON CHARACTERISTICS
MODEL SAFETY PROGRAM

STANDARDS AND INFORMATION SOURCES

REQUIREMENTS OF THE OSHA LAW
NOISE CONTROL
INFORMATION SOURCES

