ASSURANCE AND CONTROL OF QUALITY

DEFINITION OF QUALITY

QUALITY CONSIDERATIONS

PREVENTION OF DEFECTS
CUSTOMER FOCUS
STANDARDS
LEGAL LIABILITY
TOTAL INVOLVEMENT
SELECTION AND TRAINING

QUALITY SYSTEM

ROLE OF MANAGEMENT ROLE OF MARKETING ROLE OF DESIGN ROLE OF SUPPLIERS ROLE OF MATERIAL QUALITY ROLE OF MANUFACTURING ROLE OF THE CUSTOMER ROLE OF AUDITS

QUALITY IMPROVEMENT

QUALITY COST CORRECTIVE ACTION

STATISTICAL METHODS FOR QUALITY AND PRODUCTIVITY DESIGN AND IMPROVEMENT

CHAPTER

SOURCES OF VARIATION AND THEIR COUNTERMEASURES

QUALITY PERSPECTIVE IN ENGINEERING DESIGN

STATISTICAL PROCESS CONTROL

DATA CHARACTERIZATION

TYPES OF DATA
FREQUENCY DISTRIBUTION
MEASURES OF CENTRAL TENDENCY
MEASURES OF DISPERSION
OR VARIABILITY
THE NORMAL DISTRIBUTION CURVE
DISTRIBUTION OF SAMPLE MEANS

CONTROL CHARTS

VARIABLE CONTROL CHARTS

SELECTION OF SAMPLES
CHARTS FOR INDIVIDUALS
ATTRIBUTE CONTROL CHARTS
IMPLEMENTATION OF SPC METHODS:
A CASE STUDY

PROCESS CAPABILITY

ASSIGNMENT OF TOLERANCES

STATISTICAL TOLERANCES
LOSS FUNCTION APPROACH TO
QUALITY CHARACTERIZATION

THE ROLE OF DESIGN OF EXPERIMENTS

CONSIDERATIONS IN EXPERIMENTAL WORK

TWO-LEVEL FACTORIAL DESIGN EXPERIMENTS

FEATURES OF TWO-LEVEL FACTORIALS
TWO-LEVEL FACTORIAL
EXPERIMENT EXAMPLE
UNREPLICATED EXPERIMENTS
ALGEBRAIC REPRESENTATION
DETERMINATION OF
DISPERSION EFFECTS

TWO-LEVEL FRACTIONAL FACTORIAL DESIGNS

CONSEQUENCES OF FRACTIONATION
DESIGN GENERATORS AND
DEFINING RELATIONSHIP
DESIGN RESOLUTION
ORTHOGONAL ARRAYS

ROBUST PRODUCT AND PROCESS DESIGN

VARIABLE CLASSIFICATION
DESIGN STRATEGY FOR
PARAMETER DESIGN
SIGNAL-TO-NOISE RATIO AS A
QUANTITATIVE ANALYSIS TOOL

RESPONSE SURFACE METHODOLOGY

DEFINING THE PATH OF STEEPEST ASCENT EXPLORING THE PATH OF STEEPEST ASCENT MODELING OF THE NEAR-OPTIMAL REGION

ANALYSIS OF THE NEAR-OPTIMAL REGION

INSPECTION EQUIPMENT AND TECHNIQUES

FUNDAMENTAL UNITS AND STANDARDS

CALIBRATION
CHARACTERISTICS OF A MEASUREMENT
MEASURING CONDITIONS
FUTURE TRENDS IN MEASUREMENT

GENERAL-PURPOSE MEASURING DEVICES

NONGRADUATED TOOLS OR INSTRUMENTS GRADUATED TOOLS OR INSTRUMENTS COMPARATIVE INSTRUMENTS

GAGE BLOCKS

USING GAGE BLOCKS

FIXED FUNCTIONAL GAGES

GAGE MATERIALS
GAGE TOLERANCES
CYLINDRICAL PLUG GAGES
CYLINDRICAL RING GAGES
SNAP GAGES
TAPER GAGES
THREAD GAGES
SPLINE GAGES

VISUAL REFERENCE GAGING

OVERLAY TEMPLATES
TOOLMAKERS' MICROSCOPES
OPTICAL COMPARATORS AND
COMPARATOR CHARTS
MAGNIFIERS
OPTICAL FLATS

LASER INSPECTION DEVICES

LASER SCANNING INSTRUMENTS LASER TRIANGULATION AUTOCOLLIMATORS INTERFEROMETERS

AUTOMATIC GAGING AND PROCESS CONTROL

GAGING FEASIBILITY TYPES OF SYSTEMS GAGE TRANSDUCERS PROCESS CONTROL

COORDINATE MEASURING MACHINES

ADVANTAGES
MACHINE CONFIGURATIONS
PROBES
ACCESSORIES
MACHINE CONTROL
SOFTWARE

MACHINE VISION SYSTEMS

APPLICATIONS
SYSTEM OPERATION
PERFORMANCE CHARACTERISTICS
SELECTION AND IMPLEMENTATION

ROBOTIC INSPECTION SYSTEMS

ADVANTAGES AND LIMITATIONS SYSTEM COMPONENTS

DIMENSIONAL METROLOGY AND GEOMETRIC CONFORMANCE

MEASUREMENT OF GEOMETRIC DIMENSIONING AND TOLERANCING

GLOSSARY OF TERMS
PRINCIPLES
FORM CONTROL TOLERANCES
PROFILE CONTROL TOLERANCE
ORIENTATION TOLERANCES
LOCATION TOLERANCES
RUNOUT TOLERANCE

MEASUREMENT OF CIRCULARITY (ROUNDNESS)

NOMENCLATURE MEASURING METHODS EQUIPMENT

MEASUREMENT OF ANGLES

INDIRECT MEASUREMENT DIRECT MEASUREMENT ROTATIONAL MEASUREMENT OPTICAL MEASUREMENT

SCREW THREAD GAGING AND MEASUREMENT

THREAD NOMENCLATURE MEASURING EQUIPMENT MEASURING METHODS

MEASUREMENT OF GEARS AND SPLINES

STANDARDS AND SPECIFICATIONS
NOMENCLATURE
ANALYTICAL GEAR CHECKING
FUNCTIONAL GEAR CHECKING
MEASUREMENT OF INVOLUTE SPLINES

SURFACE TECHNOLOGY

SURFACE TEXTURE

NOMENCLATURE
SURFACE TEXTURE COMPONENTS
SURFACE TEXTURE DESIGNATION
MEASUREMENT OF SURFACE TEXTURE

SURFACE INTEGRITY

SURFACE ALTERATIONS EVALUATION PROCEDURES PROCESS GUIDELINES

NONDESTRUCTIVE TESTING

VISUAL INSPECTION

MIRRORS AND MAGNIFIERS
BORESCOPES
VIDEO DEVICES

LIQUID PENETRANT INSPECTION

ADVANTAGES AND LIMITATIONS
PENETRANTS
DEVELOPERS
PROCESS DESCRIPTION
EQUIPMENT
SAFETY AND SPECIFICATIONS

MAGNETIC PARTICLE TESTING

ADVANTAGES AND LIMITATIONS OPERATING PRINCIPLES MAGNETIC PARTICLES PROCESS DESCRIPTION EQUIPMENT

ULTRASONIC TESTING

APPLICATIONS
ADVANTAGES AND LIMITATIONS
OPERATING PRINCIPLES
PROCESS DESCRIPTION
EQUIPMENT

RADIOGRAPHIC TESTING

APPLICATIONS
ADVANTAGES AND LIMITATIONS
PRINCIPLES
FILM
PROCESS DESCRIPTION

EQUIPMENT

SAFETY

EDDY-CURRENT TESTING

APPLICATIONS
ADVANTAGES AND LIMITATIONS
PRINCIPLES
EQUIPMENT
TESTING TECHNIQUES

LEAK TESTING

BUBBLE EMISSION TESTING TRACER GAS LEAK TESTING AIR LEAK TESTING

THERMAL NONDESTRUCTIVE TESTING

INFRARED THEORY
NONCONTACT METHODS
CONTACT METHODS
TESTING CONSIDERATIONS

ACOUSTIC EMISSION TESTING

APPLICATIONS
ADVANTAGES AND LIMITATIONS
PRINCIPLES
INSTRUMENTATION AND
SIGNAL PROCESSING

NEUTRON RADIOGRAPHY

APPLICATIONS
ADVANTAGES AND LIMITATIONS
NEUTRON SOURCES
DETECTION METHODS
SPECIFICATIONS AND STANDARDS

HOLOGRAPHIC NONDESTRUCTIVE TESTING

APPLICATIONS
ADVANTAGES AND LIMITATIONS
TEST METHODS
EQUIPMENT
SAFETY

PLATING AND COATING THICKNESS MEASUREMENT

X-RAY FLUORESCENCE
BETA RAY BACKSCATTER
EDDY-CURRENT METHOD
ELECTROMAGNETIC INDUCTION METHOD
HALL EFFECT
MICRORESISTANCE METHOD

MECHANICAL TESTING AND BALANCING

MECHANICAL TESTING

TEST METHODS
HARDNESS TESTS

TENSION TEST
COMPRESSION TESTS
TRANSVERSE BENDING TESTS
DIRECT SHEAR TESTS
TORSION TESTS
NOTCHED-BAR IMPACT TESTS
FRACTURE TOUGHNESS TESTS
FATIGUE TESTS CREEP TESTS
RAPID METAL IDENTIFICATION TESTS
STRESS ANALYSIS

BALANCING

BALANCING NOMENCLATURE
UNBALANCE
BALANCING PROCESS
BALANCE TOLER ANCES
AND SPECIFICATIONS
BALANCING SPEED
BALANCING MACHINES AND EQUIPMENT
TOOLING

MECHANICAL FASTENING

INTEGRAL FASTENERS

LANCED OR SHEAR-FORMED TABS EXTRUDED HOLES EMBOSSED PROTRUSIONS SEAMS CRIMPS

THREADED FASTENERS

TYPES OF THREADED FASTENERS
MATERIALS, FINISHES AND COATINGS
STRENGTH OF BOLTED JOINTS
BOLTS AND STUDS
NUTS
SCREWS
SCREWS
SCREW THREAD INSERTS
CAPTIVE (SELF-RETAINED)
THREADED FASTENERS
SELF-LOCKING

THREADED FASTENERS

SPECIAL-PURPOSE FASTENERS

QUICK-OPERATING FASTENERS
SPRING CLIPS
FAMPER-RESISTANT FASTENERS
EXPANDING FASTENERS
SELF-SEALING FASTENERS
FASTENERS MADE OF PLASTICS
MECHANICAL FASTENERS FOR PLASTICS
FASTENERS FOR
COMPOSITE MATERIALS
BOLT-NUT COMBINATION

RIVETS

RIVET TYPES
DESIGN OF RIVETED JOINTS
RIVET AND JOINT STRENGTHS
CLINCHING (SETTING) OF RIVETS
BLIND RIVETS/FASTENERS
EYELETS

RETAINING RINGS

ADVANTAGES
TYPICAL APPLICATIONS
TYPES OF RETAINING RINGS
TAPERED-SECTION
RETAINING RINGS
SPIRAL-WOUND RETAINING RINGS
WIRE-FORMED RETAINING RINGS

PINS

STRAIGHT PINS
DOWEL PINS
TAPERED (TAPER) PINS
CLEVIS PINS
COTTER PINS
WIRE PINS
GROOVED PINS
KNURLED PINS
KNURLED DRIVE STUDS
BARBED PINS
SPRING PINS

WASHERS

FLAT (PLAIN) WASHERS SPRING WASHERS OTHER WASHER TYPES

INDUSTRIAL STITCHING AND STAPLING

WIRE STITCHING INDUSTRIAL STAPLING

SHRINK AND EXPANSION FITS

ADVANTAGES
METHODS OF CHANGING DIMENSIONS
PRESSURES AND STRESSES
IN SHRINKAGE FITS
DIMENSIONAL CHANGES
DUE TO TEMPERATURE CHANGES
STRENGTH OF SHRINK-FIT ASSEMBLIES
SAFETY PRECAUTIONS

INJECTED METAL ASSEMBLY

THE PROCESS
ADVANTAGES AND LIMITATIONS
DESIGNING PARTS FOR
INJECTED METAL ASSEMBLY
METALS INJECTED
STRENGTH OF ASSEMBLIES
TYPICAL APPLICATIONS
EQUIPMENT USED
TYPICAL TOOLING
OPERATING PARAMETERS
SAFETY CONSIDERATIONS

WELDING AND CUTTING

OVERVIEW OF WELDING PROCESSES

DEFINITIONS OF
SELECTED TERMS
PROCESS SELECTION
DESIGNING FOR WELDING
WELD QUALITY
PREHEATING AND STRESS RELIEVING
THE COST OF WELDING
SAFETY CONSIDERATIONS

OXYFUEL GAS WELDING AND CUTTING

OXYFUEL GAS WELDING THERMAL CUTTING PROCESSES OXYFUEL GAS CUTTING

ARC WELDING AND CUTTING

DEFINITIONS OF SELECTED TERMS FUNDAMENTALS OF ARC WELDING WELDING VARIOUS METALS

JOINTS, WELDS AND GROOVES ARC WELDING DEFECTS

OTHER POTENTIAL PROBLEMS

PREHEATING AND STRESS RELIEVING METHODS OF APPLYING WELDING ESTIMATING THE COST OF ARC WELDING

PLANT LAYOUT FOR WELDING SHIELDED METAL ARC WELDING GAS TUNGSTEN ARC WELDING

GAS METAL ARC WELDING FLUX-CORED ARC WELDING ELECTROGAS WELDING SUBMERGED ARC WELDING STUD WELDING

PLASMA ARC WELDING

PLASMA ARC WELDING ARC WELDING CONSUMABLES

POWER SOURCE SELECTION
WIRE-FEEDER SELECTION

WELD QUALITY AND TROUBLESHOOTING

AIR-CARBON ARC CUTTING
PLASMA ARC CUTTING
OTHER ARC CUTTING PROCESSES
SAFETY IN ARC WELDING AND CUTTING

ELECTROSLAG WELDING

APPLICATIONS
PROCESS ADVANTAGES
LIMITATIONS
STEELS WELDED
JOINT DESIGN
PRINCIPLES OF OPERATION
EQUIPMENT REQUIREMENTS
DEPOSITION RATES AND WELD QUALITY
WELDING PROCEDURE SCHEDULES
OPERATING VARIABLES

RESISTANCE WELDING

RESISTANCE SPOT WELDING
RESISTANCE SEAM WELDING
RESISTANCE PROJECTION WELDING
FLASH, UPSET, AND
PERCUSSION WELDING
HIGH-FREQUENCY WELDING
SAFETY IN RESISTANCE WELDING

ELECTRON BEAM WELDING AND CUTTING

PROCESS OVERVIEW
APPLICATIONS
ADVANTAGES
LIMITATIONS
WELDING VARIOUS METALS
OPERATING PRINCIPLES
OPERATIONAL MODES
LOADING AND UNLOADING METHODS
ACCELERATING VOLTAGE
WELDING MOTION
JOINT PREPARATION AND
BEAM-TO-SEAM ALIGNMENT
ELECTRON BEAM CUTTING

SAFETY IN ELECTRON BEAM WELDING AND CUTTING

LASER BEAM WELDING AND CUTTING

LASER BEAM WELDING
LASER BEAM CUTTING
SAFETY IN LASER WELDING AND CUTTING

THERMIT WELDING

PROCESS PRINCIPLES
JOINT PREPARATION
RAIL WELDING
REPAIR WELDING
REINFORCEMENT BAR WELDING
WELDING ELECTRICAL CONNECTIONS
SAFETY CONSIDERATIONS

DIFFUSION WELDING

APPLICATIONS
ADVANTAGES
LIMITATIONS
PROCESS VARIATIONS
WELDING VARIOUS METALS
JOINT DESIGN AND
SURFACE PREPARATION
DIFFUSION AIDS
EQUIPMENT USED
OPERATING PARAMETERS

FRICTION WELDING

APPLICATIONS
ADVANTAGES
LIMITATIONS
PROCESS VARIATIONS
OPERATING PRINCIPLES
WELDING VARIOUS MATERIALS
JOINT DESIGN AND PREPARATION
WELD STRENGTH
PREWELD AND POSTWELD
HEAT TREATMENT
MACHINES USED
OPERATING PARAMETERS
SAFETY CONSIDERATIONS

ULTRASONIC WELDING

APPLICATIONS
ADVANTAGES
LIMITATIONS
PROCESS PRINCIPLES
WELDING VARIOUS MATERIALS
SURFACE PREPARATION
FOR METAL WELDING
QUALITY AND STRENGTH
OF METAL WELDS
ULTRASONIC WELDING EQUIPMENT
MACHINES USED
TIPS FOR WELDING METALS
OPERATING PARAMETERS
FOR METAL WELDING
SAFETY CONSIDERATIONS

EXPLOSIVE WELDING AND CLADDING

APPLICATIONS
OTHER ADVANTAGES
LIMITATIONS
PROCESS PRINCIPLES
METALS WELDED AND CLAD
METAL PREPARATION
PRODUCT QUALITY
OPERATING PROCEDURES
EXPLOSIVES USED
SAFETY CONSIDERATIONS

OTHER SOLID-STATE WELDING PROCESSES

COLD WELDING
FORGE WELDING
COEXTRUSION WELDING
PULSED MAGNETIC WELDING
VIBRATION WELDING

BRAZING AND SOLDERING

BRAZING

APPLICATIONS ADVANTAGES

LIMITATIONS

BRAZING PROCESSES

BRAZING VARIOUS MATERIALS

JOINT DESIGNS

SURFACE PREPARATION

JOINT STRENGTH AND QUALITY

BRAZING FILLER METALS

BRAZING FLUX

ATMOSPHERES

SAFETY CONSIDERATIONS

SOLDERING

APPLICATIONS

ADVANTAGES LIMITATIONS

PROCESS PRINCIPLES

SOLDERING METHODS

SOLDERING VARIOUS MATERIALS

JOINT DESIGN

PRECLEANING AND PRECOATING

JOINT STRENGTH AND QUALITY

SOLDERING FILLER METALS

SOLDERING FLUXES

ADHESIVE JOINING

ADVANTAGES AND LIMITATIONS

ADVANTAGES OF ADHESIVE JOINING PROCESS LIMITATIONS

TYPICAL APPLICATIONS

AUTOMOTIVE USES
FOOD PACKAGING
STRUCTURAL APPLICATIONS
WELDBONDING
BONDED SANDWICH CONSTRUCTION

PRINCIPLES OF ADHESIVE JOINING

TYPES OF ADHESIVES

ADHESIVE MATERIAL CATEGORIES
CHEMICALLY REACTIVE
ADHESIVES (CLASS I)
EVAPORATIVE ADHESIVES (CLASS II)
HOT-MELT ADHESIVES (CLASS III)
DELAYED-TACK ADHESIVES (CLASS IV)
FILM ADHESIVES (CLASS V)
PRESSURE-SENSITIVE
ADHESIVES (CLASS VI)
PRIMERS FOR STRUCTURAL ADHESIVES

DESIGN CONSIDERATIONS

MATERIALS TO BE BONDED JOINT DESIGN³²

PRODUCT AND PROCESS SELECTION

PHYSICAL REQUIREMENTS
SETTING CHARACTERISTICS
ROOM TEMPERATURE CURING
INFLUENCE OF TEMPERATURE
ADHESIVE LIFE
CLEANABILITY
APPLICATION CONDITIONS
SAFETY CONSIDERATIONS

APPLICATION METHODS

MANUAL ROLLER APPLICATION
SCREEN OR STENCIL PRINTING
BRUSHING
EXTRUSION AND FLOW
TROWELING
SPRAYING
ROLL COATERS
VACUUM IMPREGNATION
MANUAL APPLICATORS
AUTOMATIC APPLICATORS
ROBOTIC APPLICATORS
SELECTION OF EQUIPMENT³⁶

SURFACE PREPARATION

METALLIC SURFACES
NONMETALLIC SURFACES

INSPECTION, TESTING AND QUALITY CONTROL

NONDESTRUCTIVE TESTING DESTRUCTIVE TESTING

AUTOMATED ASSEMBLY

CONSIDERATIONS FOR AUTOMATED ASSEMBLY

PRACTICALITY OF AUTOMATION LABOR RELATIONS

MANAGEMENT INVOLVEMENT

ECONOMIC CONSIDERATIONS FOR ASSEMBLY AUTOMATION

PRODUCT DESIGN FOR AUTOMATED ASSEMBLY

VALUE ANALYSES AND MOTION STUDIES

USE OF COMPUTERS

DESIGN FOR SIMPLIFICATION
DESIGN FOR EASE OF
AUTOMATIC ASSEMBLY
MODULAR AND STANDARDIZED DESIGNS

RETAINING PRE-ESTABLISHED

ORIENTATION

QUALITY REQUIREMENTS

ASSEMBLY MACHINES AND SYSTEMS

SELECTION FACTORS

BASIC EQUIPMENT REQUIREMENTS

SINGLE-STATION ASSEMBLY

SYNCHRONOUS ASSEMBLY SYSTEMS

NONSYNCHRONOUS

ASSEMBLY SYSTEMS

CONTINUOUS-MOTION SYSTEMS

DIAL (ROTARY) ASSEMBLY

IN-LINE SYSTEMS

CAROUSEL MACHINES

FLEXIBLE ASSEMBLY SYSTEMS

ROBOTIC ASSEMBLY SYSTEMS

AUTOMATED ELECTRONIC ASSEMBLY PARTS FEEDING, ORIENTING

AND POSITIONING

JOINING AND FASTENING METHODS

INSPECTING AND TESTING OPERATIONS

CONTROLS FOR AUTOMATED ASSEMBLY

DEBUGGING ASSEMBLY MACHINES

AND SYSTEMS

SAFETY CONSIDERATIONS