ENGINEERING MATERIALS, CARBON AND ALLOY STEELS

ENGINEERING MATERIALS

GLOSSARY OF TERMS MATERIAL PROPERTIES

CARBON STEELS

STEELMAKING PRACTICE
TYPES OF STEEL
GRADES OF STEEL
CARBON STEEL QUALITY
ALLOYING ELEMENTS
MECHANICAL PROPERTIES
APPLICATIONS
MACHINING AND FABRICATING
CHARACTERISTICS

ALLOY STEELS

STEELMAKING PRACTICE
ALLOY STEEL GRADES
ALLOY STEEL QUALITY
ALLOYING ELEMENTS
MECHANICAL PROPERTIES
APPLICATIONS
MACHINING AND
FABRICATING CHARACTERISTICS

HIGH-STRENGTH LOW-ALLOY STEELS

PRODUCT FORMS AND APPLICATIONS
PRODUCTION OF HSLA STEELS
TYPES OF HSLA STEELS
SPECIFICATIONS
SELECTION FACTORS

STAINLESS AND MARAGING STEELS

STAINLESS STEELS

MANUFACTURING PRACTICE
TYPES OF STAINLESS STEELS
APPLICATIONS
MACHINING AND
FABRICATING CHARACTERISTICS

MARAGING STEELS

ALLOYS
APPLICATIONS
FABRICATING CHARACTERISTICS

CHAPTER 3

CAST STEELS AND IRONS

CAST STEELS

MANUFACTURING PRACTICE CAST STEEL ALLOYS AND APPLICATIONS PROCESSING STEEL CASTINGS

CAST IRONS

MELTING AND CASTING TECHNIQUES TYPES OF CAST IRON MECHANICAL PROPERTIES PROCESSING CHARACTERISTICS

HIGH-PERFORMANCE ALLOYS

MANUFACTURING PRACTICE

TYPES OF HIGH-PERFORMANCE ALLOYS

NICKEL-BASED ALLOYS COBALT-BASED ALLOYS IRON-BASED ALLOYS

APPLICATIONS

MECHANICAL PROPERTIES

MACHINING AND FABRICATING CHARACTERISTICS

MACHINING FORMING WELDING HEAT TREATMENT

TUNGSTEN, MOLYBDENUM AND TITANIUM

TUNGSTEN

PRODUCTION PROPERTIES APPLICATIONS WELDING AND BONDING FABRICATION

MOLYBDENUM

PRODUCTION
ALLOYS
APPLICATIONS
FABRICATION
MACHINING
DRILLING
THREADING
GRINDING

TITANIUM

BASIC PRODUCTION ALLOYS APPLICATIONS FABRICATION

ALUMINUM, COPPER AND MAGNESIUM

ALUMINUM

BASIC METAL PRODUCTION
ALLOY AND TEMPER DESIGNATION
PROPERTIES
APPLICATIONS
FABRICATION

COPPER

BASIC METAL PRODUCTION ALLOY DESIGNATION SYSTEM² COPPER AND COPPER ALLOYS PROPERTIES APPLICATIONS FABRICATION

MAGNESIUM

BASIC METAL PRODUCTION
ALLOY DESIGNATION SYSTEM
ALLOYS AND PRODUCT FORMS
PROPERTIES
APPLICATIONS
FABRICATION

LEAD, TIN AND ZINC

LEAD

BASIC METAL PRODUCTION
LEAD ALLOY DESIGNATION
LEAD PRODUCT FORMS
PROPERTIES
APPLICATIONS FOR LEAD
AND LEAD ALLOYS

TIN

BASIC METAL PRODUCTION TIN ALLOY DESIGNATION GRADES OF TIN PROPERTIES APPLICATIONS

ZINC

BASIC METAL PRODUCTION
ALLOY DESIGNATION SYSTEM
PRODUCT FORMS AND ALLOY TYPES
PROPERTIES
APPLICATIONS

PLASTICS AND COMPOSITES

PLASTICS

INDUSTRY STRUCTURE
PLASTICS
DESIGNATION SYSTEMS
BASIC TERMINOLOGY
MECHANICAL PROPERTIES
ENGINEERING PLASTICS²
PROCESSING AND APPLICATIONS

ADVANCED COMPOSITES

STATE OF THE ART

NOMENCLATURE³
THE MATRIX
FIBER TYPES AND PRODUCTION
FIBER FORMS AND FABRICS
COMPOSITE CONSTRUCTION
PROPERTIES
APPLICATIONS
FABRICATION

POWDERED METALS

ATTRIBUTES OF POWDER METALLURGY

DISTINCTIVE OPERATIONS
UNIQUE CAPABILITIES
TYPICAL APPLICATIONS

METAL POWDERS

FERROUS MATERIALS
NONFERROUS MATERIALS
GENERAL ENGINEERING PROPERTIES

POWDER METALLURGY PARTS PRODUCTION

TOOLING CONSIDERATIONS HOW PM PARTS ARE MADE

HIGH-PERFORMANCE PM PARTS PRODUCTION

HOT FORGED PM PARTS
ISOSTATIC PRESSING
HIGH ALLOYS
TOOL STEELS
PM INJECTION MOLDING
EXTRUDING AND ROLLING

HOW TO SPECIFY PM PARTS PROCESSING

SIZES AND SHAPES PROCESS SELECTION

HEAT TREATMENT OF STEEL

GLOSSARY OF HEAT TREATING TERMS

HEAT TREATMENT PRINCIPLES

AUSTENITIZING EQUALIZING QUENCHING

HARDENABILITY OF STEELS

EFFECT OF CARBON AND ALLOY CONTENT MEASURING HARDENABILITY H STEELS AND HARDENABILITY BANDS PROBLEMS IN HARDENING

HARDENING PROCEDURES

HEATING METHODS
CONTROLLED ATMOSPHERES
QUENCHING

SOLUTION TREATING AND AGING

SOLUTION HEAT TREATMENT AGING

TEMPERING

AVOIDING BRITTLENESS
TEMPERING TOOL STEELS
MULTIPLE TEMPERING
TEMPERING MEDIA

ANNEALING

EFFECTS OF HOT AND COLD WORKING STRESS RELIEVING

FULL ANNEALING
ISOTHERMAL (CYCLE) ANNEALING
SPHEROIDIZING
LOW-TEMPERATURE ANNEALING
RECRYSTALLIZATION ANNEALING

RECOVERY ANNEALING
PROCESS ANNEALING
HOMOGENIZATION ANNEALING
SOLUTION ANNEALING
ANNEALING FOR MAGNETIC PROPERTIES

NORMALIZING

COLD TREATMENT

RETAINED AUSTENITE STRESS RELIEVING AND AGING PREVENTION WEAR RESISTANCE THE COLD TREATMENT PROCESS EQUIPMENT USED

SURFACE (CASE) HARDENING

CARBURIZING

LIQUID CARBURIZING
CYANIDING
NONCYANIDE LIQUID CARBURIZING
PACK CARBURIZING
GAS CARBURIZING

NITRIDING

STEELS NITRIDED PRIOR TREATMENT LIQUID NITRIDING GAS NITRIDING

CARBONITRIDING

ADVANTAGES ATMOSPHERES USED FURNACES EMPLOYED

CHROMIZING

BORONIZING

HEAT TREATING FURNACES

METHODS OF HEATING FURNACES

DIRECT-FIRED FURNACES
ELECTRICALLY
HEATED FURNACES
RADIANT-TUBE FURNACES
ENERGY CONSERVATION

TYPES OF FURNACES

FURNACE CONSTRUCTION BATCH FURNACES CONTINUOUS FURNACES

SALT-BATH FURNACES

LIMITATIONS
PRECAUTIONS
APPLICATIONS
FURNACE TYPES
FURNACE AUTOMATION
SALTS USED
SAFETY CONSIDERATIONS

ADVANTAGES

VACUUM FURNACES

ADVANTAGES
LIMITATIONS
APPLICATIONS
TYPES OF FURNACES
SAFETY CONSIDERATIONS

FLUIDIZED-BED FURNACES

OPERATING PRINCIPLES

FURNACE DESIGN
TEMPERATURE AND
ATMOSPHERE CONTROL
FLUIDIZED-BED QUENCHING
MATERIAL HANDLING EQUIPMENT

PROCESS CAPABILITIES

FURNACE CONTROLS

CONTROL REQUIREMENTS

TEMPERATURE CONTROL

ATMOSPHERE CONTROL
VACUUM MEASUREMENT AND CONTROL
PROCESS CONTROLLERS
PROGRAMMABLE CONTROLLERS
COORDINATED CONTROLS
DATA CENTERS

SAFETY CONSIDERATIONS

SAFETY PROGRAMS
PERSONAL PROTECTIVE EQUIPMENT
FUEL, ATMOSPHERE AND
CARBURIZING GASES
QUENCHING OILS AND TANKS
MOLTEN-SALT BATHS
VACUUM FURNACES
FLUID-BED FURNACES
FURNACE MECHANISMS

SELECTIVE SURFACE HARDENING

INDUCTION HARDENING

ADVANTAGES OF INDUCTION HEATING

OTHER APPLICATIONS

PRINCIPLES OF INDUCTION HEATING

FREQUENCY SELECTION

EQUIPMENT USED

INDUCTION SURFACE HARDENING

QUENCHING

INDUCTOR COIL DESIGN

SCAN HARDENING VERSUS

SINGLE-SHOT HARDENING

WORKPIECE HANDLING

HIGH-FREQUENCY RESISTANCE HARDENING

PROCESS DETAILS

TYPICAL APPLICATIONS

MATERIALS HARDENED

OPERATING PARAMETERS

FLAME HARDENING

APPLICATIONS

FUEL GASES

METHODS

WORKPIECE DESIGN

EQUIPMENT USED

TEMPERATURE CONTROL

WORKHOLDING FIXTURES

SAFETY PRECAUTIONS

ELECTRON-BEAM HARDENING

THE PROCESS

VACUUM ENVIRONMENT

PROCESS ADVANTAGES

LIMITATIONS

MACHINES USED

LASER HARDENING

THE HARDENING PROCESS

METALLURGICAL CONSIDERATIONS

EQUIPMENT USED

OPERATING PARAMETERS

SAFETY CONSIDERATIONS

HEAT TREATMENT OF OTHER METALS

CAST IRONS

STRESS RELIEVING
ANNEALING
NORMALIZING
HARDENING
HEAT TREATING PRACTICES

CAST STEELS

HEAT TREATING PROCEDURES
ANNEALING
NORMALIZING
HARDENING BY QUENCHING
TEMPERING
STRESS RELIEVING
SOLUTION HEAT TREATMENT
AGE (PRECIPITATION) HARDENING

STAINLESS AND MARAGING STEELS

FERRITIC ALLOYS

MARTENSITIC STAINLESS STEELS

PRECIPITATION-HARDENING ALLOYS

MARAGING STEELS

DUPLEX STAINLESS STEELS

AUSTENITIC STAINLESS STEELS

TITANIUM AND ITS ALLOYS

TYPES OF HEAT TREATMENT HEAT TREATMENT SCHEDULES HEAT TREATING PRACTICES

HEAT-RESISTING, HIGH-STRENGTH ALLOYS

TYPES OF ALLOYS
SOLUTION TREATING AND AGING
PRECIPITATION-STRENGTHENED ALLOYS
SOLUTION TREATING SOLUTIONSTRENGTHENED ALLOYS
STRESS RELIEVING
ANNEALING
HEAT TREATING PRACTICE

ALUMINUM ALLOYS

NONHEAT-TREATABLE ALLOYS
HEAT-TREATABLE ALLOYS
ANNEALING CHARACTERISTICS
TYPICAL HEAT TREATMENTS
HEAT TREATING FURNACES

MAGNESIUM ALLOYS

ANNEALING
SOLUTION TREATING AND AGING
STRESS RELIEVING
REHEAT TREATMENT
HEAT TREATING PRACTICES

COPPERS AND COPPER ALLOYS

COPPERS
BRASSES
COPPER-NICKEL ALLOYS
NICKEL-SILVER ALLOYS
MULTIPHASE ALLOYS
HEAT TREATMENT OF BERYLLIUM
COPPER ALLOYS

SURFACE AND EDGE IMPROVEMENT

FUNCTIONAL REQUIREMENTS

IMPROVED SURFACE FINISHES
HIGH-QUALITY COATINGS
FACILITATING ASSEMBLY
IMPROVED PERFORMANCE
INCREASED FATIGUE STRENGTH

MINIMIZING COSTS

REASONS FOR EXCESSIVE COSTS
METHODS OF REDUCING COSTS
BURR NOMENCLATURE
BURR FORMATION
BURR PROPERTIES
DESIGN CONSIDERATIONS
PROCESSING CONSIDERATIONS

SURFACE AND EDGE FINISHING METHODS

PROCESSES USED PROCESS SELECTION

MECHANICAL AND ABRASIVE DEBURRING AND FINISHING

HAND (MANUAL) DEBURRING

WHY HAND DEBURRING IS USED EVALUATING HAND DEBURRING HAND DEBURRING IMPROVING HAND DEBURRING FINDING BURRS DEBURRING TOOLS

BRUSHING, POLISHING AND BUFFING

POWER BRUSHING

BUFFING POLISHING

ROLLER AND BALL FINISHING/BURNISHING

ROLLER FINISHING
DEEP ROLLING
ROLLER BURNISHING
BALL BURNISHING

SPECIAL-PURPOSE MACHINES AND ROBOTIC DEBURRING

TYPES OF SPECIALIZED MACHINES ROBOTIC DEBURRING, FETTLING AND FINISHING

MASS FINISHING

PROCESS ADVANTAGES
LIMITATIONS
APPLICATIONS OF MASS FINISHING
PROCESS SELECTION
BARREL FINISHING/TUMBLING
VIBRATORY FINISHING
HIGH-ENERGY MASS FINISHING
OTHER MASS FINISHING PROCESSES
MEDIA FOR MASS FINISHING
COMPOUND SOLUTIONS FOR
MASS FINISHING
TROUBLESHOOTING
SAFETY CONSIDERATIONS

ABRASIVE-FLOW MACHINING

PROCESS ADVANTAGES
LIMITATIONS OF THE PROCESS
TYPICAL APPLICATIONS
PROCESS PRINCIPLES
MACHINES USED
WORKHOLDING FIXTURES
MEDIA FOR ABRASIVE-FLOW MACHINING

BLAST FINISHING

PROCESS ADVANTAGES
AND LIMITATIONS
APPLICATIONS OF BLAST FINISHING
DRY BLASTING
WET BLASTING

SHOT PEENING

EFFECTS OF SHOT PEENING
SHOT PEENING APPLICATIONS
PROCESS PARAMETERS
SHOT PROPULSION
OTHER EQUIPMENT CONSIDERATIONS

GRINDING WITH BONDED ABRASIVES

GRINDING WITH BONDED WHEELS COATED-ABRASIVE GRINDING HONING SUPERFINISHING

FINISHING WITH LOOSE ROLLING ABRASIVES

LAPPING FREE-ABRASIVE MACHINING

THERMAL, CHEMICAL AND ELECTROCHEMICAL FINISHING

THERMAL ENERGY METHOD

ADVANTAGES AND LIMITATIONS
APPLICATIONS
PROCESS PRINCIPLES
MACHINES USED

OTHER THERMAL METHODS

HOT WIRE DEFLASHING
RESISTANCE HEATING
TORCH FLAME DEBURRING
ELECTRICAL DISCHARGE DEBURRING
PLASMA AND LASER DEBURRING
CHLORINE GAS DEBURRING

ELECTROPOLISHING

APPLICATIONS
PRETREATMENT REQUIREMENTS
EQUIPMENT USED
ELECTROPOLISHING SOLUTIONS
OPERATING CONSIDERATIONS
POST-TREATMENT

CHEMICAL POLISHING AND BRIGHT DIPPING

PROCESS DIFFERENCES
PRETREATMENT REQUIREMENTS

EQUIPMENT USED
SOLUTIONS FOR VARIOUS METALS
SOLUTION CONTROL AND ANALYSIS
OPERATING CONSIDERATIONS
POST-TREATMENT

ELECTROCHEMICAL DEBURRING

ADVANTAGES OF THE PROCESS
PROCESS LIMITATIONS
TYPICAL APPLICATIONS
PROCESS PRINCIPLES
PRETREATMENT OF WORKPIECES
EQUIPMENT REQUIREMENTS
TOOL DESIGN
FIXTURE DESIGN
STANDARD MODULAR TOOLING
OPERATING PARAMETERS
POST-TREATMENT

ULTRASONIC DEBURRING

CLEANING

SELECTING A CLEANING PROCESS

WORKPIECE MATERIAL,
SIZE AND SHAPE
TYPES OF SOILS
DEGREE OF CLEANLINESS REQUIRED
SURFACE PREPARATION FOR COATING
WATER USED
PRODUCTION REQUIREMENTS
SAFETY AND
ENVIRONMENTAL CONSIDERATIONS

CHEMICAL CLEANING

REACTIONS IN CHEMICAL CLEANING SOLVENT CLEANERS ALKALINE CLEANERS ACIDIC CLEANERS RINSING DRYING PROCESSES AND EQUIPMENT

STEAM AND FLAME CLEANING

STEAM CLEANING FLAME CLEANING

VAPOR DEGREASING

PROCESS ADVANTAGES
LIMITATIONS OF THE PROCESS
PRINCIPLES
METHODS OF CLEANING
VAPOR DEGREASING SOLVENTS
SOLVENT CONSERVATION
WATER USE AND SLUDGE DISPOSAL
SAFETY PRECAUTIONS

ULTRASONIC CLEANING

CONVERSION COATINGS AND ANODIZING

CONVERSION COATINGS

CONVERSION COATING TYPES
APPLICATIONS
METALS TREATED
PHOSPHATE CONVERSION COATINGS
COATING EVALUATION
CHROMATE CONVERSION COATINGS
OXIDE CONVERSION COATINGS
PROCESSING
EQUIPMENT

ANODIZING

THEORY
COATINGS PRODUCED
HARD COATING
APPLICATIONS
COATING PROCESS
EQUIPMENT
TESTING AND SPECIFICATIONS
TROUBLESHOOTING
SAFETY AND ENVIRONMENTAL
CONSIDERATIONS

PLATING

ELECTROPLATING

THEORY
GLOSSARY OF TERMS
METALS ELECTROPLATED
METAL SUBSTRATES
DESIGN CONSIDERATIONS
PLATING METHODS AND EQUIPMENT
SUBSTRATE PREPARATION
OPERATING PARAMETERS
PLATING PLASTICS
SOLUTION CONTROL
AND TROUBLESHOOTING
SAFETY
EFFLUENT TREATMENT

ELECTROFORMING

APPLICATIONS
ELECTROFORMED METALS
ELECTROFORMING BATHS
MANDRELS
EQUIPMENT

SELECTIVE PLATING

PROCESS
ADVANTAGES AND LIMITATIONS
APPLICATIONS
EQUIPMENT
OPERATING PARAMETERS
TROUBLESHOOTING AND TESTING
SAFETY
WASTE DISPOSAL

MECHANICAL PLATING

PROCESS DESCRIPTION
OPERATING PARAMETERS
MECHANICAL PLATING EQUIPMENT
POLLUTION TREATMENT

ELECTROLESS PLATING

METALS DEPOSITED

PROPERTIES APPLICATIONS

ELECTROLESS PLATING PROCESS

PRECLEANING
CLEANING
INITIATING DEPOSITION
PLATING

CONTROLLING THE PLATING PROCESS

EQUIPMENT

TEST METHODS

APPEARANCE AND ADHESION POROSITY HARDNESS THICKNESS COMPOSITION CORROSION RESISTANCE AND PROTECTION WEAR RESISTANCE

THERMAL SPRAYING AND HARD FACING

THERMAL SPRAYING

MATERIALS DEPOSITED
PROCESSES
APPLICATIONS
PROCESS VARIABLES
TOOLING AND FIXTURING
SAFETY

HARD FACING

APPLICATIONS
HARD-FACING MATERIALS
APPLICATION METHODS

CHAPTER 23

PORCELAIN ENAMELING AND HOT DIPPING

PORCELAIN ENAMELING

GLOSSARY OF TERMS
TYPES OF PORCELAIN ENAMELS
METAL SUBSTRATES
DESIGN CONSIDERATIONS
METAL PREPARATION
THE PORCELAIN ENAMELING PROCESS
ENAMELING FURNACES

HOT DIPPING

ZINC HOT DIPPING (GALVANIZING)
ALUMINUM HOT DIPPING
HOT-DIP TINNING (TINPLATING)
LEAD ALLOY HOT
DIPPING (TERNE COATING)

VAPOR DEPOSITION PROCESSES

CHEMICAL VAPOR DEPOSITION

ADVANTAGES AND LIMITATIONS COATINGS DEPOSITED APPLICATIONS PROCESS FACTORS

ION VAPOR DEPOSITION

ADVANTAGES AND LIMITATIONS
APPLICATIONS
PROCESS DESCRIPTION
EQUIPMENT

PHYSICAL VAPOR DEPOSITION OF HARD COATINGS

COATINGS DEPOSITED
APPLICATIONS
REACTIVE PVD PROCESSES
PROCESS CONSIDERATIONS
FILM EVALUATION

VACUUM METALLIZING

ROLL METALLIZING
BATCH METALLIZING

SPUTTERING

ADVANTAGES AND LIMITATIONS APPLICATIONS SPUTTERING METHODS PROCESS DESCRIPTION

SPECIAL PROCESSES

FLEXIBLE OVERLAYS

ADVANTAGES AND LIMITATIONS
APPLICATIONS
AVAILABLE COATINGS
PROCESS

STEAM TREATING

ADVANTAGES AND LIMITATIONS
APPLICATIONS
PROCESS DESCRIPTION
EQUIPMENT
SAFETY AND
ENVIRONMENTAL CONSIDERATIONS

ION IMPLANTATION

PROCESS DESCRIPTION
ADVANTAGES AND LIMITATIONS
APPLICATIONS
EQUIPMENT
ENVIRONMENTAL AND SAFETY ISSUES

COATING MATERIALS

BINDERS

CLASSIFICATIONS TYPES OF BINDERS

PIGMENTS

PIGMENT CLASSES
PIGMENT PROPERTIES

SOLVENTS

ADDITIVES

SURFACTANTS
PROTECTIVE COLLOIDS
AND THICKENERS
BIOCIDES AND FUNGICIDES
FREEZE/THAW STABILIZERS
COALESCING AGENTS
DEFOAMERS
PLASTICIZERS
FLATTENING AGENTS
FLOW MODIFIERS
STABILIZERS
CATALYSTS
ANTISKINNING AGENTS

FORMULATIONS

CORROSION-PREVENTIVE MATERIALS

BARRIER COATINGS CONVERSION COATINGS AND CONVERSION-TYPE PIGMENTS

RADIATION-CURABLE COATINGS

VAPOR CURE COATINGS

POWDER COATINGS

THERMOPLASTIC POWDERS THERMOSETTING POWDERS

APPLICATION METHODS

SUBSTRATE PREPARATION

SPRAY COATING

THE LIQUID COATING MATERIAL CONVENTIONAL AIR SPRAY AIRLESS (HYDRAULIC) SPRAYING ROTARY ATOMIZATION AIR-ASSISTED AIRLESS SPRAY HOT SPRAYING ELECTROSTATIC SPRAYING AUTOMATED SPRAYING

POWDER COATING

APPLICATION METHODS TROUBLESHOOTING

ELECTROCOATING

THEORY
APPLICATIONS AND COATINGS APPLIED
EQUIPMENT
OPERATING PARAMETERS

AUTODEPOSITION

AUTODEPOSITION BATH PROCESS DESCRIPTION EQUIPMENT

DIP, FLOW AND CURTAIN COATING

DIP COATING FLOW COATING CURTAIN COATING

ROLLER COATING

BRUSHING AND ROLLING

AUXILIARY EQUIPMENT

AIR COMPRESSORS
HOSES AND FITTINGS
PUMPS
REGULATORS AND FILTERS
PAINTING BOOTHS
CONVEYORS
HANGERS AND RACKS

CHAPTER 28

CURING METHODS

AMBIENT TEMPERATURE DRYING

CATALYTIC CURING

ELEVATED TEMPERATURE CURING

TIME-TEMPERATURE RELATIONSHIP
EFFECTS OF COATING MATERIAL
SUBSTRATE EFFECTS
CURING OVENS
HEATING REQUIREMENTS FOR CURING
PROCESS SELECTION
VAPOR INCINERATION

VAPOR CURING

VAPOR PERMEATION CURING (VPC)
VAPOR INJECTION CURING (VIC)

RADIATION CURING

PROCESS ADVANTAGES
AND LIMITATIONS
PROCESS PRINCIPLES
APPLICATIONS
MICROWAVE CURING
INFRARED CURING
ULTRAVIOLET (UV) CURING
ELECTRON BEAM (EB) CURING

COATING SYSTEMS

ECONOMIC ANALYSIS

COST OF COATING MATERIALS
COST PER VOLUME
OF NV MATERIAL
TRANSFER EFFICIENCY
VERSUS PAINT COST
TOTAL APPLIED COST OF COATING
RELATIVE COSTS OF
VARIOUS COATING PROCESSES
ENERGY CONSUMPTION

PAINT APPLICATION SYSTEMS

TYPICAL AUTOMOTIVE PAINT SYSTEMS
PAINTING AGRICULTURAL MACHINERY
AIRCRAFT PAINTING
PAINTING APPLIANCES
FURNITURE PAINTING
PAINTING PLASTICS
OTHER PAINT APPLICATION SYSTEMS

TESTING, TROUBLESHOOTING AND SAFETY

TESTING OF PAINT

TESTING PAINTS
BEFORE APPLICATION
TESTING OF APPLIED FILMS

TROUBLESHOOTING

PINPOINTING TROUBLES
PAINT STORAGE AND
BAKING TEMPERATURE
DEFECTIVE COATINGS

COATING REMOVAL

STRIPPABLE COATINGS
BURNOFF STRIPPING
MOLTEN SALT-BATH STRIPPING
PHYSICAL METHODS OF STRIPPING
BRUSHED-ON SOLVENT STRIPPERS
FLUIDIZED-BED STRIPPING
CRYOGENIC STRIPPING
STEAM GUN STRIPPING
HOT-FLOW STRIPPING
IMMERSION STRIPPING
SOLVENT STRIPPERS
WATERBORNE STRIPPERS

REGULATORY COMPLIANCE REQUIREMENTS

SOLVENT EMISSION REGULATIONS SELECTING PAINTS AND PROCESSES FOR COMPLIANCE REUSE AND REDUCTION OF WASTES WASTE DISPOSAL REGULATIONS