DESIGN FOR MANUFACTURABILITY

BUSINESS ENVIRONMENT

COST CONTROL FACTORS

DFM INPUTS

DESIGN FOR MANUFACTURABILITY

PROBLEMS WITHOUT DFM
TRADITIONAL RELATIONSHIPS
TIME-TO-MARKET ISSUES
CONCURRENT ENGINEERING DEFINED
MULTIFUNCTIONAL TEAMS
EARLY SUPPLIER INVOLVEMENT
TIME-BASED PROGRAM MANAGEMENT
APPROACHES
PROJECT MANAGEMENT
TECHNOLOGY TOOLS
CAM

DESIGNING WITH SOFTWARE

3D PLASTIC ANALYSIS SOFTWARE
PART DESIGN OPTIMIZATION
TECHNOLOGY TOOLS IN PERSPECTIVE
PART FACTORS
PART FUNCTION
PART FEATURES
ENVIRONMENTAL DESIGN

BASIC RULES AND GUIDELINES

CONTACT THE VENDOR
MATERIAL AND DESIGN CONSIDERATIONS

DESIGN CONSIDERATIONS

WALL THICKNESS THE RIB BOSSES

SHAPING THE PART HOLES AND IMPRESSIONS MASS PRODUCTION

RAPID PROTOTYPING

CNC VERSUS RAPID PROTOTYPING TYPES OF RP SYSTEMS

COMMON MISTAKES

CREEP

STRESS
SHRINKAGE
COLOR VARIANCE
GATE MARKS
INADEQUATE DRAFT
SINK MARKS
UNANTICIPATED USE

SUMMARY

CHAPTER SUMMARY

TECHNOLOGY ISSUES
MANAGEMENT AND SYSTEM ISSUES

MATERIAL SELECTION

INTRODUCTION

WHY USE PLASTIC?

CONSIDERATIONS

SELECTION CRITERIA
MANUFACTURING CRITERIA
SUMMARY OF MATERIAL SELECTION
GUIDELINES

OVERVIEW

POLYMER FEATURES
UNIQUE QUALITIES
MELT VISCOSITY
COPOLYMERS
THERMOPLASTICS AND THERMOSETS
BULK PROPERTIES
CRYSTAL STRUCTURES

FUNDAMENTALS OF PLASTICS AND POLYMERS

DIFFERENCES POLYETHYLENE POLYESTER

APPLICATIONS OF PLASTICS TO PRODUCT TYPES

POLYMERS MARKETS

INTRODUCTORY CHEMISTRY OF PLASTICS AND POLYMERS

ATOMIC STRUCTURE PERIODIC TABLE IONIC BONDS COVALENT BONDS METALLIC BONDS
RULES OF BONDING
SECONDARY BONDS
AMORPHOUS OR CRYSTALLINE
MOLECULAR WEIGHT
POLYMER REACTIONS

THERMOSETS

CROSS-LINKING METHODS
DIFFERENT TYPES OF THERMOSETS
SILICONES
THERMOSETS AS FILLERS AND COPOLYMERS

THERMOPLASTICS

THERMOPLASTIC TYPES
OVERVIEW OF COMMODITY PLASTICS
POLYETHYLENE
POLYPROPYLENE
POLYVINYL CHLORIDE
POLYSTYRENE
OTHER TYPES OF THERMOPLASTICS
BLOCK COPOLYMERS
RIGID-ROD POLYMERS
BLENDS

STRENGTHENING AND ENHANCING PLASTICS AND POLYMERS

CHAIN LENGTH
COPOLYMERIZATION
CROSS-LINKING
FIBER REINFORCEMENT
OTHER ADDITIVES
ALLOYS AND BLENDS

BIOMEDICAL POLYMERS

CLASSIFICATIONS

SYNTHETIC PROCEDURES

ADDITION POLYMERIZATION
CONDENSATION OR STEPWISE
POLYMERIZATION
COLOR IN PLASTICS
BASIC RULES FOR SELECTING A
COLORING METHOD

FACTORS IN CHOOSING A COLORANT COLORANT TYPES CALCULATING FOR COLORANT RATIOS

COATINGS FOR PLASTICS

REASONS FOR COATING PLASTIC SUBSTRATES
ADHESION OF COATINGS
NATURE OF SUBSTRATE SURFACE PLASTIC SURFACE PRETREATMENTS
ADHESION PROMOTERS
CLEANING PLASTICS
COATING TYPES

MEASURING PROPERTIES

MECHANICAL PROPERTIES
OTHER PROPERTIES
TESTS AND THEIR SIGNIFICANCE

SUMMARY OF MATERIAL SELECTION GUIDELINES

KEY MECHANICAL PROPERTIES
KEY THERMAL PROPERTIES
KEY CHEMICAL PROPERTIES
FINAL PRODUCT APPEARANCE
SUPPLIERS

SELECTION OF MANUFACTURING METHODS

INTRODUCTION

POLYMER BEHAVIOR

CHEMICAL REACTIONS

BLENDING AND MIXING

ADDITIVES

SHAPING POLYMERIC MATERIALS

FILMS, SHEETS, AND SLABS
MOLDED PARTS
FOAM PROCESSING
EXTRUSION OF PIPE, TUBING, AND PROFILES
FOAM PROCESSING

MANUFACTURE OF FIBER-REINFORCED COMPOSITES

HAND LAY-UP SPRAY-UP VACUUM BAG MOLDING PRESSURE BAG MOLDING AUTOCLAVE MOLDING FILAMENT WINDING PULTRUSION CENTRIFUGAL CASTING

PROCESSING LIQUID POLYMERIC SYSTEMS

PROCESSING OF POLYMER SOLUTIONS
PROCESSING OF POLYMERIC LATEXES
AND SUSPENSIONS
PROCESSING OF LIQUID POLYMERS
AND PREPOLYMERS
THE VINYL DIP MOLDING PROCESS
THE PROCESS
SELECTION CRITERIA/ALTERNATE
PROCESSES

SECONDARY MANUFACTURING PROCESSES

DEFLASHING MACHINING

CUTTING
CALIBRATION (OR SIZING)
SLITTING
STRETCHING
SURFACE FINISHES
ASSEMBLY

PROCESSES FOR ALTERING MATERIAL PROPERTIES

DIES, MOLDS AND TOOLING

MOLD DESIGN CONSIDERATIONS

PLASTIC PART DESIGN BASICS
MOLD DESIGN BASICS
MOLD QUALIFICATION
MOLD OPERATION AND OPTIMIZATION
PREVENTIVE MAINTENANCE
MOLDING PRESS INFORMATION
OTHER CONSIDERATIONS
HEAT TRANSFER
METALLURGICAL ASPECTS

MOLD PLATING

MOLD MATERIAL

CHROMIUM
ENGINEERING NICKEL
TUNGSTEN NICKEL
ELECTROLESS NICKEL
CHROME POLYTETRAFLUOROETHYLENE
NICKEL PTFE
ELECTROLESS NICKEL CHROMIUM

RECORDKEEPING

FLOW ANALYSIS

THREE-DIMENSIONAL ANALYSIS TWO-DIMENSIONAL ANALYSIS

MOLDMAKING IMPROVEMENTS

AREAS THAT NEED IMPROVEMENT CONCLUSION

EXTRUSION EQUIPMENT AND PROCESSING TECHNIQUES

PRINCIPLES OF EXTRUSION

EXTRUDER DESCRIPTION

SCREW
THE HEAD ZONE
EXTRUSION DIES
BARREL
FEED THROAT
DRIVE AND MOTOR
GEARBOX

SMOOTH-BORE EXTRUDER

EXTRUDER SCREW
SCREW COMPRESSION RATIO
MIXING ELEMENT
COOLING SYSTEM
BARREL ZONES
BREAKER PLATE
RUPTURE DISK

GROOVED-FEED EXTRUDER

NO ADDED HEAT FLIGHT DEPTHS

BLOWN-FILM PROCESS

AIR RING
MONOLAYER DIES
COEXTRUSION
COEXTRUSION BLOWN-FILM DIES
DIE ASSEMBLY
THE BLOWN-FILM DIE AND ADAPTER
A-FRAME ASSEMBLY
SYSTEM OPERATION
COOLING RING

INTERNAL BUBBLE COOLING SLITTING AND WINDING CORONA DISCHARGE RELAXATION PLENUM BLOWUP RATIO

FILM WINDERS

HAUL-OFF ASSEMBLIES SURFACE WINDER

CENTER-TYPE WINDERS OTHER TERMS

WINDER DESIGN CONSIDERATIONS DRIVE CALCULATIONS

ELECTRONIC CONTROLLERS AND FEEDBACK LOOPS
TENSION CONTROL SYSTEMS

BLOWN-FILM EQUIPMENT AND OPERATING COST

CAST FILM AND SHEET

CHILL ROLLS
ADVANTAGES AND DISADVANTAGES

PROFILE EXTRUSION

POLYETHYLENE PIPE AND FITTINGS MANUFACTURING TUBING AND HOSE WIRE COATING AND FIBER-OPTIC SHEATHING

MATERIAL CONSIDERATIONS

COMPOUNDING AND PELLETIZING POWDER AND PELLETS ABRASIVE THERMOPLASTICS CORROSIVE POLYMERS TOLERANCES

AUXILIARY EQUIPMENT

PROCESS CONTROL GENERAL EQUIPMENT

OPERATION AND MAINTENANCE OF EQUIPMENT

BASE

MOTOR

REDUCTION GEAR

THRUST BEARING

HEATING/COOLING

BARREL

SCREWS

HEAD

DIES

TAKE-OFFS

SPARE PARTS

RECORDS

CLEANING SMALL PARTS

WARM UP

INITIAL START-UP STAGE

SYSTEM SHUTDOWN

PROCESS DESIGN CONSIDERATIONS

GEAR PUMPS GROOVED FEED COMPARED TO SMOOTH BORE

TROUBLESHOOTING

MATERIALS
GENERAL PROCESSING
FILM EXTRUSION PROBLEMS
POLYETHYLENE FILM EXTRUSION

MECHANICAL ELECTRICAL MAINTENANCE

SAFETY

HEAT

ELECTRICITY

MOVING PARTS

WEIGHT

INSIDE THE EXTRUDER

OUTSIDE THE EXTRUDER

PRESSURE

PROCEDURES

NEW DEVELOPMENTS

INJECTION MOLDING

TRADITIONAL INJECTION MOLDING

INDUSTRY OVERVIEW
EVOLUTION OF THE INDUSTRY
THE MOLDING MACHINE
MOLDING PROCESS PARAMETERS
DETERMINING INJECTION MOLDING COSTS
MELT FLOW AND PROCESSIBILITY
MINIMIZING MOLDED-IN STRESS
MATERIAL SELECTION

TROUBLESHOOTING THE MOLDING PROCESS

BLACK SPECKS OR STREAKS BLISTERS

BLUSH

BOWING

BRITTLENESS

BUBBLES (VOIDS)

BURN MARKS

CLEAR SPOTS

CLOUDY APPEARANCE

CONTAMINATION

CRACKING

CRAZING

DELAMINATION

DISCOLORATION

FLASH

FLOW LINES

LOW GLOSS

JETTING

KNIT LINES (WELD LINES)

NONFILL (SHORT SHOTS)

EXCESSIVE SHRINKAGE

SINK MARKS

SPLAY (SILVER STREAKING)

WARPAGE

TROUBLESHOOTING TIPS

REACTION INJECTION MOLDING

RIM ADVANTAGES
RIM LIMITATIONS
RIM MATERIALS AND APPLICATIONS
RIM PROCESS

STRUCTURAL FOAM MOLDING

MATERIALS
MACHINES
MINIMIZING SWIRL PATTERNS

RUNNERLESS MOLDING

CATEGORIES OF RUNNERLESS MOLDING SPRUELESS MOLDING CONCLUSIONS

NONTRADITIONAL TECHNOLOGIES

GAS-ASSIST INJECTION MOLDING
WITH NITROGEN
LIQUID GAS-ASSIST INJECTION MOLDING
LAMELLAR INJECTION MOLDING

AUXILIARY EQUIPMENT

CAVITY PRESSURE SENSORS
BARREL TEMPERATURE CONTROLLERS AND
THEIR REPLACEMENT
INSULATOR SHEETS
RUNNERLESS TEMPERATURE
CONTROL SYSTEMS

BLOW MOLDING

INTRODUCTION

BLOW MOLDING TERMS

HISTORY

TYPES OF BLOW-MOLDING PROCESSES

INJECTION BLOW MOLDING EXTRUSION BLOW MOLDING EXTRUSION STRETCH BLOW MOLDING

MATERIALS

INJECTION BLOW-MOLDING EQUIPMENT

TOOLING

EXTRUSION BLOW-MOLDING EQUIPMENT

SCREW DESIGN
PARISON-FORMING SECTION
MACHINE TYPES
HEAD TOOLING SIZE
THE BLOWING SECTION
TRIMMING SECTION
AUXILIARY EQUIPMENT
MOLD DESIGN AND CONSTRUCTION
MAINTENANCE

DESIGN CONSIDERATIONS

PARTING LINE AND DRAFT ANGLE
BLOW RATIO
NONSYMMETRICAL PARTS OR DETAILS
ON PARTS
DIMENSIONAL CONTROL
MOUNTING TABS, INSERTS, HINGES,
AND INTERLOCKS
STRUCTURAL AND COSMETIC
CONSIDERATIONS

MANUFACTURING CONSIDERATIONS

PRODUCT COST SAFETY

NEW DEVELOPMENTS

COEXTRUSION
FLASHLESS BLOW MOLDING
PET BLOW MOLDING
DEEP-DRAW BLOW MOLDING

CONCLUSION

THERMOFORMING

THERMOFORMING BASICS

ADVANTAGES
DISADVANTAGES
THERMOFORMING MATERIALS
TYPES OF THERMOPLASTICS
THERMOFORMING METHODS

CONTINUOUS ROLL-FED PROCESS

FEATURES OF A ROLL-FED
THERMOFORMING MACHINE
HOW DIE CHOICE CAN DICTATE THE
EQUIPMENT USED
SECONDARY OPERATIONS PERFORMED ON
INDIVIDUAL CUT PARTS

SHEET-FED THERMOFORMING

SHEET-FED MACHINERY
POSTOPERATIONS ON
VACUUM-FORMED PARTS
SECONDARY OPERATIONS ON
PRESSURE-FORMED PARTS
PART PRICING PARAMETERS

LAMINATION

COATINGS

PAINTING PLASTICS
START-UP CHECKLIST FOR PAINT SPRAY LINES
TRANSPARENT COATINGS
HOT STAMPING
DECORATION

METAL DEPOSITION

PLATING PLASTICS SPUTTERING VACUUM-METALLIZED PLASTICS

MULTILAYER PROCESSES

DRY ADHESIVE FLAT BED LAMINATION FILM AND SHEET FORMING

ROTATIONAL MOLDING

THE BASIC PROCESS

APPLICATIONS
ADVANTAGES AND LIMITATIONS
MATERIALS TESTING AND PREPARATION

MOLDS AND SPECIAL CONSIDERATIONS

CONSTRUCTION
MULTILAYER MOLDINGS
CROSS-LINKED MOLDINGS
INSERTS
DECORATIONS

EQUIPMENT

GRINDING MIXING DRYING MATERIAL LOADING

MACHINE TYPES

CLAMSHELL MACHINES
TURRET MACHINES
SHUTTLE MACHINES
SWING MACHINES
VERTICAL WHEEL MACHINES
ROCK AND ROLL MACHINES
OPEN-FLAME MACHINES

PROCESS FACTORS

SINTERING
MOLD ROTATION
CONTROL SYSTEMS
TRIMMING
MOLDS
CAST ALUMINUM MOLDS
CLAMPING
INSERTS
MOLD ARMS
MOUNTING

VENTING DROP BOX MOLD RELEASE AGENTS

MATERIALS

POLYETHYLENES

LLDPE

LDPE

HDPE

NYLON

POLYCARBONATE

POLYPROPYLENE

VINYLS

ADDITIVES

DESIGN GUIDELINES

ANGLES

CORNERS

DRAFTS

FLATNESS

HOLES

INSERTS

MULTIWALL PARTS

RIBS/BOSSES

TEXTURED SURFACES

THREADS

TOLERANCES

UNDERCUTS

WALL THICKNESS

SECONDARY FINISHING

DECORATING/PAINTING ELECTRON BEAM CROSS-LINKING

FOAM FILLING

MACHINING

WELDING

TROUBLESHOOTING

BLOW HOLES AT PARTING LINE BLOW HOLES AROUND INSERTS BLOW HOLES IN OTHER AREAS OF PART BUBBLES ON SURFACE OR IN PART DISCOLORATION OF PART FLASHING AT PARTING LINE
INCOMPLETE MOLD FILL
INCOMPLETE FUSING OF MATERIAL
LOW-IMPACT STRENGTH
LOW-PART STIFFNESS
LONG-OVEN CYCLE
MOLD BULGING
PART STICKS IN MOLD
PLATE-OUT
POCK MARKS ON PART
UNEVEN COLORING
WALL THICKNESS UNEVEN
WARPING OF PART

INDUSTRY ASSOCIATION

CASTING

ACRONYMS

GLOSSARY

THE CASTING PROCESS

WHAT CAN BE CAST

CASTING ACRYLICS

THE OLD METHOD
ACRYLICS CASTING TODAY
MAKING AN ACRYLIC SHEET
TUBES AND RODS
AUTOCLAVES
POLISHING

POLYSTYRENE CASTINGS

POLYESTER CASTINGS

CATALYSTS
CATALYSTS AND HEAT
CALCULATE THE WEIGHT
CATALYZATION CONSIDERATIONS
POLYESTER CASTING CASE STUDY
EMBEDMENT/CASTING CASE STUDY
CORPORATE LOGO CASE STUDY

SYNTHETIC STONE

PRODUCTION STEPS
GRANITES
EMBEDMENT AND CULTURED MARBLE
ADDING FILLERS TO POLYESTER
REINFORCED POLYESTER

EPOXY CASTINGS

FEATURES
TYPES
DILUENT EFFECTS
CROSS-LINKING
HARDENERS
EPOXY CASE STUDY

SILICONES

CHARACTERISTICS USES

POLYURETHANES

TYPES
CURING
APPLICATIONS

PHENOLICS

COLD MOLDING

CASTING MOLDS

MOLD MATERIALS
POSITIVE MOLD MAKING

FOAMS

FOAM PROCESSING

INTRODUCTION

BASIC CHEMISTRY

CHAIN EXTENSION GAS FORMATION CROSS-LINKING

FOAM PRODUCTION METHODS

OPEN POUR FROTH CLOSED POUR

FOAM EQUIPMENT

RAW MATERIAL SUPPLY
METERING UNITS
MIX HEADS
TEMPERATURE CONTROL
PROCESS CONTROL SYSTEMS

FOAM MACHINES

SLAB STOCK FOAM MACHINES BLOCK FOAM MACHINES MOLDED FOAM MACHINES FOAM CONFIGURATION

CONVEYING SYSTEMS

FOAM MOLDS

MOLD CARRIERS FIXTURING MOLD TEMPERATURE CRUSHING MOLD RELEASES

RIGID FOAM LAMINATE BOARD LINES

PRODUCTION CYCLE

FOAM FABRICATION

TRIMMING, SLITTING AND CUTTING
LAMINATION
ADHESIVE TYPES
DIELECTRIC SEALING

CARPET UNDERLAY

PRIME FOAM BONDED FOAM

FOAM TYPES

RETICULATED FOAM RECYCLING FOAM

TROUBLESHOOTING FOR CONVENTIONAL SLAB STOCK FOAM

COMPRESSION AND TRANSFER MOLDING

THERMOSET PLASTICS MOLDING

PRINCIPLES OF PLASTICS MOLDING COMPRESSION MOLDING TRANSFER MOLDING MOLDING PROCESS COMPARISON

COMPRESSION MOLDING

PRINCIPAL COMPRESSION MOLDING PARAMETERS TROUBLESHOOTING

TRANSFER MOLDING

PRINCIPAL TRANSFER MOLDING PARAMETERS TROUBLESHOOTING

FIBER REINFORCED PROCESSING

GLOSSARY OF TERMS

INTRODUCTION TO REINFORCED PLASTICS

POLYESTER RESINS
VINYL ESTER RESINS
EPOXY RESINS
PHENOLIC RESINS
AMINO RESINS
THERMOPLASTIC POLYESTERS
THERMOPLASTIC NYLON RESINS
THERMOPLASTIC POLYESTERS
OTHER THERMOPLASTIC REINFORCED
ENGINEERING POLYMERS

PROPERTY DESIGN BY COMPOUNDING

REINFORCING AGENTS
REACTIVE REINFORCING MATERIALS
FILLERS AND EXTENDERS

METHODS OF FABRICATING REINFORCED PLASTICS

HAND LAY UP
RESIN INJECTION MOLDING
SPRAY UP
PREFORM MOLDING
RESIN TRANSFER MOLDING
SHEET MOLDING COMPOUND
COMPATIBILITY WITH STEEL BODY ASSEMBLY
BULK MOLDING COMPOUNDS

BULK MOLDING COMPOUNDS
THICK MOLDING COMPOUND
VACUUM BAG, PRESSURE BAG AND
AUTOCLAVE MOLDING
PULTRUSION PROFILES FOR CONSTRUCTION
MATERIALS
CURED-IN-PLACE REINFORCED PLASTICS
PLASTIC PANELS IN AUTOMOTIVE AND

CONSTRUCTION APPLICATIONS
POLYMER CONCRETE UNDERGROUND
PRODUCTS

ENGINEERING PHENOLIC COMPOSITES
SEMIRIGID AND RIGID POLYURETHANES
THERMOPLASTIC INJECTION MOLDING
COMPOUNDS
THERMOPLASTIC COMPOSITES
RECYCLING OF WASTE-REINFORCED
PLASTIC MATERIALS

PULTRUSION

THE BASIC PROCESS

RESIN

REINFORCEMENT OTHER RAW MATERIALS

CYCLE TIME

COMPOSITE SELECTION

COST ESTIMATING

DESIGN CONSIDERATIONS

TOLERANCES

TROUBLESHOOTING

CONTINUOUS IMPROVEMENT STRATEGIES

SAFETY

NEW DEVELOPMENTS

PULFORMING

STRUCTURAL REACTION INJECTION MOLDING

PROCESS DESCRIPTION

MOLDING CYCLE

SRIM APPLICATIONS

COMPARISON OF SRIM TO OTHER PLASTIC

PROCESSES

COMPARISON OF COST

IMPACT RESISTANCE

EQUIPMENT

PREFORM EQUIPMENT AND PROCESSES

SLURRY PROCESS

BINDERS/ADHESIVES

FEATURES AND DESIGN CONSIDERATIONS

MOLDS

TROUBLESHOOTING

MAINTENANCE

SAFETY

CONTINUOUS IMPROVEMENT/NEW

DEVELOPMENTS

RESIN TRANSFER MOLDING

CHARACTERISTICS
ADVANTAGES AND LIMITATIONS
PREFORM SELECTION AND FABRICATION
TOOL SELECTION AND DESIGN
RESIN SELECTION AND REQUIREMENTS
RESIN DELIVERY SYSTEMS
PROCESSING FUNDAMENTALS
PROCESS IMPROVEMENTS AND
DATA COLLECTION
TROUBLESHOOTING
SAFETY AND MAINTENANCE
SUMMARY

DIP MOLDING

THE PROCESS

SELECTION CRITERIA GENERAL DESCRIPTION OF THE PROCESS MATERIALS

METAL TOOLS

PROCESS SUMMARY

APPLICATIONS

ADVANTAGES
LIMITATIONS
WHEN TO USE THIS PROCESS

PRODUCTION EQUIPMENT

OPERATING PARAMETERS

MACHINE CONTROLS

ORDER OF OPERATIONS

ADVANTAGES OF AUTOMATED DIP MOLDING SYSTEMS SPECIFICATIONS

PROCESS CYCLE TIME

AUXILIARY EQUIPMENT

CYCLE TIME AND COST ESTIMATION

MATERIAL REQUIREMENTS

DESIGN CONSIDERATIONS

TOLERANCES

TROUBLESHOOTING

SURFACE IMPERFECTIONS IN THE FINISHED DIP MOLDED PART MATERIAL PICKUP BELL TOPPING MOISTURE OR AIR DRIP

MAINTENANCE

SAFETY

IMPROVEMENTS AND NEW DEVELOPMENTS

FORMULATION
MACHINE DESIGN AND CONTROLS
FINISHING

FINISHING, FABRICATION AND ASSEMBLY

PREPARATION AND FINISHING

MACHINING PLASTICS BUFFING PLASTICS CUTTING WITH LASERS

ASSEMBLY

PLASTIC WELDS
WELDING PLASTICS
ULTRASONIC PLASTIC WELDING
ELECTROMAGNETIC WELDING
FASTENERS
REQUIREMENTS CHECKLIST

QUALITY CONTROL, ASSURANCE AND IMPROVEMENT

INTRODUCTION

WHAT IS QUALITY?
WHY IMPROVE QUALITY?
CHAPTER OVERVIEW

PLANNING

VOICE OF THE CUSTOMER
BUSINESS PLAN/MARKETING STRATEGY
PRODUCT ASSURANCE PLAN
MANAGEMENT SUPPORT

PRODUCT DESIGN AND DEVELOPMENT

INFORMATION REQUIREMENTS
DESIGN ACTIVITY
OUTPUTS BY PRODUCT QUALITY
PLANNING TEAM

PRODUCT AND PROCESS VALIDATION

PRODUCTION TRIAL RUN
CALIBRATION
EQUIPMENT CERTIFICATION
MEASUREMENT ASSURANCE
INCOMING INSPECTION
NONSTATISTICAL CONTROL
DIMENSIONS

STATISTICAL METHODS FOR DESCRIBING DATA

KEY CHARACTERISTICS AND PROCESS CAPABILITY
CONTROL PLAN
STATISTICAL PROCESS CONTROL CHARTING CALCULATING C_P AND C_{PK}

DESIGN OF EXPERIMENTS

TYPES OF EXPERIMENTAL DESIGNS

LOSS FUNCTION

DERIVATION OF THE LOSS FUNCTION

CALCULATING PROCESS POTENTIAL

COMPUTING Cpk SUMMARY

CONTINUOUS QUALITY IMPROVEMENT OUTLINE

BROAD CONCEPT OF CONTINUOUS IMPROVEMENT
APPROACH FOR IMPROVEMENT
DEFINITIONS AND TOOLS FOR CONTINUOUS IMPROVEMENT

PLANT ENGINEERING AND MAINTENANCE

RECYCLING PLASTIC MATERIALS

CHEMISTRY OF PLASTICS

SOURCES OF PLASTIC WASTE

ENVIRONMENTAL CONSIDERATIONS

LIFE CYCLE OF PLASTICS

RECYCLING

THE PLASTIC INDUSTRY'S VISION AND

STRATEGY FOR THE FUTURE

EQUIPMENT MAINTENANCE

ORGANIZING EQUIPMENT

BASIC BUILDING BLOCKS FOR PLANNING

PREVENTIVE MAINTENANCE

EVALUATING THE MAINTENANCE PROGRAM

DEVELOPING THE TASK

MAINTENANCE RECORDS CONTROL

TRACKING THE SYSTEM

DIAGNOSTIC TOOL NEEDS

LUBRICATION CONSIDERATIONS

TOOL SURFACE ENHANCEMENTS

THE SURFACE ENHANCEMENT DILEMMA

REVIEWING THE CHOICES

CLEANING, PRESERVATION, AND STORAGE OF METAL MOLDS AND MOLD PARTS

CORROSION

MECHANICS OF CORROSION

BASIC CHEMISTRY

HOW TO IDENTIFY TOXIC AND

HAZARDOUS MATERIALS

GOVERNMENT STANDARDS FOR WASTE

DISCHARGED INTO SEWERS

METHODS FOR CLEANING STEEL

MOLD PARTS

TREATMENT AND DISPOSAL OF SPENT ACID

AND NEUTRALIZING SOLUTIONS

MANAGEMENT

MODERN MANAGEMENT AND ISO 9000

MANAGEMENT RESPONSIBILITY AND THE

COST OF QUALITY

QUALITY SYSTEM

CONTRACT REVIEW

DESIGN CONTROL

DOCUMENT CONTROL

PURCHASING AND SUPPLIER QUALITY

MANAGEMENT

PURCHASER-SUPPLIED PRODUCT

PRODUCT IDENTIFICATION AND

TRACEABILITY

PROCESS CONTROL

INSPECTION AND TESTING

INSPECTION, MEASURING, AND EQUIPMENT

CORRECTIVE ACTION

PACKAGING, STORAGE, HANDLING,

AND DELIVERY

QUALITY RECORDS

INTERNAL QUALITY AUDITS

SERVICING

STATISTICAL TECHNIQUES

OTHER PROGRAMS

TRAINING

UNDERSTANDING PLASTICS

TRAINING METHODS

PERSONNEL SKILLS

MOTIVATION

LEADERSHIP

PLANNING AND ORGANIZATION

TIME MANAGEMENT

DELEGATION

COMMUNICATION

MEASURING PERFORMANCE

DECISION MAKING

TEAM BUILDING AND EMPOWERMENT

OPERATIONS MANAGEMENT

INVENTORY SYSTEMS FORECASTING

MANUFACTURING/PROCESSING FACILITY LAYOUT

PLANT REQUIREMENTS
CONFORMANCE TO NEEDS
PRODUCT-HANDLING EQUIPMENT
RAW MATERIAL STORAGE AND HANDLING
SUPPORT AREAS
BUILDINGS

SAFETY

EFFECTIVE SAFETY PROGRAM

SAFETY TEAM/COMMITTEE

DIRECT ACCIDENT COSTS

SAFETY SURVEY

SAFETY HANDBOOK

PREPAREDNESS, PREVENTION, AND

CONTINGENCY PLAN

PROPER HANDLING METHODS

FIRE BRIGADE AND FIRST AID TEAM

RULES AND REGULATIONS

EQUIPMENT SELECTION AND MATERIAL HANDLING

SERVICE EQUIPMENT

MISCELLANEOUS EQUIPMENT

SIZE OF EQUIPMENT

SAFETY AND ENVIRONMENTAL

CONSIDERATIONS

MATERIAL HANDLING AND RECYCLING

PLASTIC PROCESS CHANGES

MECHANICAL, ELECTRICAL, AND

BUILDING SERVICES

PROCESS- AND PRODUCTION-MONITORING

SYSTEMS

REDUCING MAINTENANCE COSTS

COMPUTERS AS MANAGEMENT TOOLS

PRODUCTION MANAGEMENT SYSTEMS PROCESS MANAGEMENT SYSTEMS

PROCESS CONTROL SYSTEMS CONCLUSIONS